We present results and analysis of finite‐difference time‐domain (FDTD) simulations of electromagnetic waves scattering off meteor head plasma using an analytical model and a simulation‐derived model of the head plasma distribution. The analytical model was developed by (Dimant & Oppenheim, 2017b,
Obtaining meteoroid mass from head echo radar cross section depends on the assumed plasma density distribution around the meteoroid. An analytical model presented in Dimant and Oppenheim (2017a,
- Award ID(s):
- 1755020
- PAR ID:
- 10460200
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 124
- Issue:
- 5
- ISSN:
- 2169-9380
- Page Range / eLocation ID:
- p. 3810-3826
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract https://doi.org/10.1002/2017JA023963 ) and the simulation‐derived model is based on particle‐in‐cell (PIC) simulations presented in (Sugar et al., 2019,https://doi.org/10.1029/2018JA026434 ). Both of these head plasma distribution models show the meteor head plasma is significantly different than the spherically symmetric distributions used in previous studies of meteor head plasma. We use the FDTD simulation results to fit a power law model that relates the meteoroid ablation rate to the head echo radar cross section (RCS), and show that the RCS of plasma distributions derived from the Dimant‐Oppenheim analytical model and the PIC simulations agree to within 4 dBsm. The power law model yields more accurate meteoroid mass estimates than previous methods based on spherically symmetric plasma distributions. -
Abstract Using Magnetospheric Multiscale (MMS) observations and combined MHD/test particle simulations, we further explore characteristic ion velocity distributions in the plasma sheet boundary layer. The observations are characterized by earthward beams, which at a slightly later time are accompanied by weaker but faster tailward beams. Two events are presented showing different histories. The first event happens at entry from the lobe into the plasma sheet. Energy‐time dispersion indicates a source region about 25
tailward of the satellite. The second event follows the passage of a dipolarization front closer to Earth. In contrast to earlier MHD simulations, but in better qualitative agreement with the first observation, reconnection in the present simulation was initiated near . Simulated distributions right at the boundary are characterized by a single crescent‐shaped earthward beam, as discussed earlier (Birn, Hesse, et al., 2015, https://doi.org/10.1002/2015JA021573 ). Farther inside, or at a later time, the distributions now also show a simple reflected beam, evolving toward a more ring‐like distribution. The simulations provide insight into the acceleration sites: The innermost edges of the direct and reflected beams consist of ions accelerated in the vicinity of the reconnection site. This supports the validity of estimating the acceleration location based on a time‐of‐flight analysis (after Onsager et al., 1990,https://doi.org/10.1029/GL017i011p01837 ). However, this assumption becomes invalid at later times when the acceleration becomes dominated by the earthward propagating dipolarization electric field, such that earthward and tailward reflected beams are no longer accelerated at the same location and the same time. -
Abstract Electron ring velocity space distributions have previously been seen in numerical simulations of magnetic reconnection exhausts and have been suggested to be caused by the magnetization of the electron outflow jet by the compressed reconnected magnetic fields (Shuster et al., 2014,
https://doi.org/10.1002/2014GL060608 ). We present a theory of the dependence of the major and minor radii of the ring distributions solely in terms of upstream (lobe) plasma conditions, thereby allowing a prediction of the associated temperature and temperature anisotropy of the rings in terms of upstream parameters. We test the validity of the prediction using 2.5‐dimensional particle‐in‐cell (PIC) simulations with varying upstream plasma density and temperature, finding excellent agreement between the predicted and simulated values. We confirm the Shuster et al. suggestion for the cause of the ring distributions, and also find that the ring distributions are located in a region marked by a plateau, or shoulder, in the reconnected magnetic field profile. The predictions of the temperature are consistent with observed electron temperatures in dipolarization fronts, and may provide an explanation for the generation of plasma with temperatures in the 10s of MK in super‐hot solar flares. A possible extension of the model to dayside reconnection is discussed. Since ring distributions are known to excite whistler waves, the present results should be useful for quantifying the generation of whistler waves in reconnection exhausts. -
Abstract Both high‐power large aperture radars and smaller meteor radars readily observe the dense head plasma produced as a meteoroid ablates. However, determining the mass of such meteors based on the information returned by the radar is challenging. We present a new method for deriving meteor masses from single‐frequency radar measurements, using a physics‐based plasma model and finite‐difference time‐domain (FDTD) simulations. The head plasma model derived in Dimant and Oppenheim (2017),
https://doi.org/10.1002/2017ja023963 depends on the meteoroids altitude, speed, and size. We use FDTD simulations of a radar pulse interacting with such head plasmas to determine the radar cross section (RCS) that a radar system would observe for a meteor with a given set of physical properties. By performing simulations over the observed parameter space, we construct tables relating meteor size, velocity, and altitude to RCS. We then use these tables to map a set of observations from the MAARSY radar (53.5 MHz) to fully defined plasma distributions, from which masses are calculated. To validate these results, we repeat the analysis using observations of the same meteors by the EISCAT radar (929 MHz). The resulting masses are strongly linearly correlated; however, the masses derived from EISCAT measurements are on average 1.33 times larger than those derived from MAARSY measurements. Since this method does not require dual‐frequency measurements for mass determination, only validation, it can be applied in the future to observations made by many single‐frequency radar systems. -
Abstract Modeling convective air movement in unsaturated porous media requires appropriate characterization of the relative air permeability (RAP). Adopting Assouline et al. (1998,
https://doi.org/10.1029/97WR03039 ) water retention function that is based on the Weibull pore size distribution, this study was conducted to derive seven new predictive RAP models. These 7 new models, together with another 3 models developed by Assouline et al. (2016,https://doi.org/10.1002/2015WR018286 ), were then compared with data from 30 disturbed soil samples to investigate their predictive RAP performances. The model and data comparison results showed that the modified Burdine, modified Mualem, and modified Alexander and Skaggs relative permeability models proposed by Yang and Mohanty (2015,https://doi.org/10.1002/2014WR016190 ) had the highest accuracy for the RAP prediction among the 10 investigated models, which indicated that the tortuosity and connectivity exponent of water phase should be smaller than that of air phase for the disturbed soil samples. The modified Burdine, modified Mualem, and modified Alexander and Skaggs models were then the suggested RAP parameterizations for the subsurface multiphase flow numerical simulation.