skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1755020

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present results and analysis of finite‐difference time‐domain (FDTD) simulations of electromagnetic waves scattering off meteor head plasma using an analytical model and a simulation‐derived model of the head plasma distribution. The analytical model was developed by (Dimant & Oppenheim, 2017b,https://doi.org/10.1002/2017JA023963) and the simulation‐derived model is based on particle‐in‐cell (PIC) simulations presented in (Sugar et al., 2019,https://doi.org/10.1029/2018JA026434). Both of these head plasma distribution models show the meteor head plasma is significantly different than the spherically symmetric distributions used in previous studies of meteor head plasma. We use the FDTD simulation results to fit a power law model that relates the meteoroid ablation rate to the head echo radar cross section (RCS), and show that the RCS of plasma distributions derived from the Dimant‐Oppenheim analytical model and the PIC simulations agree to within 4 dBsm. The power law model yields more accurate meteoroid mass estimates than previous methods based on spherically symmetric plasma distributions. 
    more » « less
  2. Abstract Meteoroids smaller than a microgram constantly bombard the Earth, depositing material in the mesosphere and lower thermosphere. Meteoroid ablation, the explosive evaporation of meteoroids due to erosive impacts of atmospheric particles, consists of sputtering and thermal ablation. This paper presents the first atomic‐scale modeling of sputtering, the initial stage of ablation where hypersonic collisions between the meteoroid and atmospheric particles cause the direct ejection of atoms from the meteoroid surface. Because meteoroids gain thermal energy from these particle impacts, these interactions are important for thermal ablation as well. In this study, a molecular dynamics simulator calculates the energy distribution of the sputtered particles as a function of the species, velocity, and angle of the incoming atmospheric particles. The sputtering yield generally agrees with semi‐empirical equations at normal incidence but disagrees with the generally accepted angular dependence.Λ, the fraction of energy from a single atmospheric particle impact incorporated into the meteoroid, was found to be less than 1 and dependent on the velocity, angle, atmospheric species, and meteoroid material. Applying this newΛto an ablation model results in a slower meteoroid temperature increase and mass loss rate as a function of altitude. This alteration results in changes in the expected electron line densities and visual magnitudes of meteoroids. Notably, this analysis leads to the prediction that meteoroids will generally ablate 1–4 km lower than previously predicted. This affects analysis of radar and visual measurements, as well as determination of meteoroid mass. 
    more » « less
  3. Abstract Obtaining meteoroid mass from head echo radar cross section depends on the assumed plasma density distribution around the meteoroid. An analytical model presented in Dimant and Oppenheim (2017a,https://doi.org/10.1002/2017JA023960; 2017b,https://doi.org/10.1002/2017JA023963) and simulation results presented in Sugar et al. (2018,https://doi.org/10.1002/2018JA025265) suggest the plasma density distribution is significantly different than the spherically symmetric Gaussian distribution used to calculate meteoroid masses in many previous studies. However, these analytical and simulation results ignored the effects of electric and magnetic fields and assumed quasi‐neutrality. This paper presents results from the first particle‐in‐cell simulations of head echo plasma that include electric and magnetic fields. The simulations show that the fields change the ion density distribution by less than ∼2% in the meteor head echo region, but the electron density distribution changes by up to tens of percent depending on the location, electron energies, and magnetic field orientation with respect to the meteoroid path. 
    more » « less