skip to main content


Title: Comparative forelimb myology and muscular architecture of a juvenile Malayan tapir ( Tapirus indicus )
Abstract

The absence of preserved soft tissues in the fossil record is frequently a hindrance for palaeontologists wishing to investigate morphological shifts in key skeletal systems, such as the limbs. Understanding the soft tissue composition of modern species can aid in understanding changes in musculoskeletal features through evolution, including those pertaining to locomotion. Establishing anatomical differences in soft tissues utilising an extant phylogenetic bracket can, in turn, assist in interpreting morphological changes in hard tissues and modelling musculoskeletal movements during evolutionary transitions (e.g. digit reduction in perissodactyls). Perissodactyls (horses, rhinoceroses, tapirs and their relatives) are known to have originated with a four‐toed (tetradactyl) forelimb condition. Equids proceeded to reduce all but their central digit, resulting in monodactyly, whereas tapirs retained the ancestral tetradactyl state. The modern Malayan tapir (Tapirus indicus) has been shown to exhibit fully functional tetradactyly in its forelimb, more so than any other tapir, and represents an ideal case‐study for muscular arrangement and architectural comparison with the highly derived monodactylEquus. Here, we present the first quantification of muscular architecture of a tetradactyl perissodactyl (T. indicus), and compare it to measurements from modern monodactyl caballine horse (Equus ferus caballus). Each muscle of the tapir forelimb was dissected out from a cadaver and measured for architectural properties: muscle‐tendon unit (MTU) length, MTU mass, muscle mass, pennation angle, and resting fibre length. Comparative parameters [physiological cross‐sectional area (PCSA), muscle volume, and % muscle mass] were then calculated from the raw measurements. In the shoulder region, theinfraspinatusofT. indicusexhibits dual origination sites on either side of the deflected scapular spine. Within ungulates, this condition has only been previously reported in suids. Differences in relative contribution to limb muscle mass betweenT. indicusandEquushighlight forelimb muscles that affect mobility in the lateral and medial digits (e.g.extensor digitorum lateralis). These muscles were likely reduced in equids during their evolutionary transition from tetradactyl forest‐dwellers to monodactyl, open‐habitat specialists. Patterns of PCSA across the forelimb were similar betweenT. indicusandEquus, with the notable exceptions of thebiceps brachiiandflexor carpi ulnaris, which were much larger inEquus. The differences observed in PCSA between the tapir and horse forelimb muscles highlight muscles that are essential for maintaining stability in the monodactyl limb while moving at high speeds. This quantitative dataset of muscle architecture in a functionally tetradactyl perissodactyl is a pivotal first step towards reconstructing the locomotor capabilities of extinct, four‐toed ancestors of modern perissodactyls, and providing further insights into the equid locomotor transition.

 
more » « less
NSF-PAR ID:
10460321
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Anatomy
Volume:
236
Issue:
1
ISSN:
0021-8782
Page Range / eLocation ID:
p. 85-97
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Monotremes are a group of egg-laying mammals, possessing a mosaic of ancestral and derived anatomical features. Despite much interest in monotremes from phylogenetic, morphological, and ecological perspectives, they have been the subject of relatively few biomechanical studies. In this study, we examined shoulder and proximal forelimb muscle anatomy and architecture in the short-beaked echidna, Tachyglossus aculeatus, through contrast-enhanced computed tomography and gross dissection. Muscle architecture is a major determinant of muscle function and can indicate specialized muscle roles, such as the capacity for generating large forces (through large physiological cross-sectional area, PCSA) or working ranges (through long fascicle lengths). We hypothesized that some muscles would exhibit architectural specializations convergent with other fossorial and/or sprawling animals, and that other muscles would reflect the echidna’s unusual anatomy and locomotor style. Instead, we found the shoulder and proximal forelimb muscles in echidna to have little variation in their architecture. The muscles generally had long fascicles and small-to-intermediate PCSAs, consistent with force production over a wide working range. Further, muscles did not show overt differences in architecture that, in therian mammals, have been linked to increased forelimb mobility and the transition from sprawling to parasagittal posture. Our measures of architectural disparity placed the echidna closer to the tegu lizard than other sprawling fossorial mammals (e.g., mole). The low architectural diversity found in the echidna’s shoulder and proximal forelimb muscles is interpreted as a lack of functional specialization into distinct roles. We hope our study will contribute to greater understanding of monotreme anatomy and biomechanical function, and to the reconstruction of musculoskeletal evolution in mammals. 
    more » « less
  2. Abstract

    Due to small body size, an immature musculoskeletal system, and other growth‐related limits on performance, juvenile mammals frequently experience a greater risk of predation than their adult counterparts. As a result, behaviorally precocious juveniles are hypothesized to exhibit musculoskeletal advantages that permit them to accelerate rapidly and evade predation. This hypothesis was tested through detailed quantitative evaluation of muscle growth in wild Eastern cottontail rabbits (Sylvilagus floridanus). Cottontail rabbits experience high rates of mortality during the first year of life, suggesting that selection might act to improve performance in growing juveniles. Therefore, it was predicted that muscle properties associated with force and power capacity should be enhanced in juvenile rabbits to facilitate enhanced locomotor performance. We quantified muscle architecture from 24 paravertebral and hindlimb muscles across ontogeny in a sample of n = 29 rabbits and evaluated the body mass scaling of muscle mass (MM), physiological cross‐sectional area (PCSA), isometric force (Fmax), and instantaneous power (Pinst), along with several dimensionless architectural indices. In contrast to our hypothesis,MMandPCSAfor most muscles change with positive allometry during growth by scaling atand, respectively, whereasFmaxandPinstgenerally scale indistinguishably from isometry, as do the architectural indices tested. However, scaling patterns indicate that the digital flexors and ankle extensors of juvenileS. floridanushave greater capacities for force and power, respectively, than those in adults, suggesting these muscle properties may be a part of several compensatory features that promote enhanced acceleration performance in young rabbits. Overall, our study implies that body size constraints place larger, more mature rabbits at a disadvantage during acceleration, and that adults must develop hypertrophied muscles in order to maintain mechanical similarity in force and power capacities across development. These findings challenge the accepted understanding that juvenile animals are at a performance detriment relative to adults. Instead, for prey–predator interactions necessitating short intervals of high force and power generation relative to body mass, as demonstrated by rapid acceleration of cottontail rabbits fleeing predators, it may be the adults that struggle to keep pace with juveniles.

     
    more » « less
  3. The evolution of upright limb posture in mammals may have enabled modifications of the forelimb for diverse locomotor ecologies. A rich fossil record of non-mammalian synapsids holds the key to unraveling the transition from “sprawling” to “erect” limb function in the precursors to mammals, but a detailed understanding of muscle functional anatomy is a necessary prerequisite to reconstructing postural evolution in fossils. Here we characterize the gross morphology and internal architecture of muscles crossing the shoulder joint in two morphologically-conservative extant amniotes that form a phylogenetic and morpho-functional bracket for non-mammalian synapsids: the Argentine black and white tegu Salvator merianae and the Virginia opossum Didelphis virginiana . By combining traditional physical dissection of cadavers with nondestructive three-dimensional digital dissection, we find striking similarities in muscle organization and architectural parameters. Despite the wide phylogenetic gap between our study species, distal muscle attachments are notably similar, while differences in proximal muscle attachments are driven by modifications to the skeletal anatomy of the pectoral girdle that are well-documented in transitional synapsid fossils. Further, correlates for force production, physiological cross-sectional area (PCSA), muscle gearing (pennation), and working range (fascicle length) are statistically indistinguishable for an unexpected number of muscles. Functional tradeoffs between force production and working range reveal muscle specializations that may facilitate increased girdle mobility, weight support, and active stabilization of the shoulder in the opossum—a possible signal of postural transformation. Together, these results create a foundation for reconstructing the musculoskeletal anatomy of the non-mammalian synapsid pectoral girdle with greater confidence, as we demonstrate by inferring shoulder muscle PCSAs in the fossil non-mammalian cynodont Massetognathus pascuali . 
    more » « less
  4. null (Ed.)
    Abstract The domestic dog is interesting to investigate because of the wide range of body size, body mass, and physique in the many breeds. In the last several years, the number of clinical and biomechanical studies on dog locomotion has increased. However, the relationship between body structure and joint load during locomotion, as well as between joint load and degenerative diseases of the locomotor system (e.g. dysplasia), are not sufficiently understood. Collecting this data through in vivo measurements/records of joint forces and loads on deep/small muscles is complex, invasive, and sometimes unethical. The use of detailed musculoskeletal models may help fill the knowledge gap. We describe here the methods we used to create a detailed musculoskeletal model with 84 degrees of freedom and 134 muscles. Our model has three key-features: three-dimensionality, scalability, and modularity. We tested the validity of the model by identifying forelimb muscle synergies of a walking Beagle. We used inverse dynamics and static optimization to estimate muscle activations based on experimental data. We identified three muscle synergy groups by using hierarchical clustering. The activation patterns predicted from the model exhibit good agreement with experimental data for most of the forelimb muscles. We expect that our model will speed up the analysis of how body size, physique, agility, and disease influence neuronal control and joint loading in dog locomotion. 
    more » « less
  5. ABSTRACT

    The masticatory apparatus has been the focus of many studies in comparative anatomy—especially analyses of skulls and teeth, but also of the mandibular adductor muscles which are responsible for the production of bite force and the movements of the mandible during food processing and transport. The fiber architecture of these muscles has been correlated to specific diets (e.g., prey size in felids) and modes of foraging (e.g., tree gouging in marmosets). Despite the well‐elucidated functional implications of this architecture, little is known about its ontogeny. To characterize age‐related myological changes, we studied the masticatory muscles in a large (n= 33) intraspecific sample of a small, Malagasy primate,Microcebus murinusincluding neonatal through geriatric individuals. We removed each of the mandibular adductors and recorded its mass as well as other linear measurements. We then chemically dissected each muscle to study its architecture—fascicle length and physiological cross‐sectional area (PCSA) which relate to stretch (gape) and force capabilities, respectively. We observed PCSA and muscle mass to increase rapidly and plateau in adulthood through senescence. Fascicle lengths remained relatively constant once maximal length was reached, which occurred early in life, suggesting that subsequent changes in PCSA are driven by changes in muscle mass. Quadratic curvilinear models of each of the architectural variables of all adductors combined as well as individual muscles regressed against age were all significant. Anat Rec, 303:1364–1373, 2020. © 2019 American Association for Anatomy

     
    more » « less