skip to main content

Title: Ontogenetic allometry and architectural properties of the paravertebral and hindlimb musculature in Eastern cottontail rabbits ( Sylvilagus floridanus ): functional implications for developmental changes in locomotor performance

Due to small body size, an immature musculoskeletal system, and other growth‐related limits on performance, juvenile mammals frequently experience a greater risk of predation than their adult counterparts. As a result, behaviorally precocious juveniles are hypothesized to exhibit musculoskeletal advantages that permit them to accelerate rapidly and evade predation. This hypothesis was tested through detailed quantitative evaluation of muscle growth in wild Eastern cottontail rabbits (Sylvilagus floridanus). Cottontail rabbits experience high rates of mortality during the first year of life, suggesting that selection might act to improve performance in growing juveniles. Therefore, it was predicted that muscle properties associated with force and power capacity should be enhanced in juvenile rabbits to facilitate enhanced locomotor performance. We quantified muscle architecture from 24 paravertebral and hindlimb muscles across ontogeny in a sample of n = 29 rabbits and evaluated the body mass scaling of muscle mass (MM), physiological cross‐sectional area (PCSA), isometric force (Fmax), and instantaneous power (Pinst), along with several dimensionless architectural indices. In contrast to our hypothesis,MMandPCSAfor most muscles change with positive allometry during growth by scaling atand, respectively, whereasFmaxandPinstgenerally scale indistinguishably from isometry, as do the architectural indices tested. However, scaling patterns indicate that the digital flexors and ankle extensors of juvenileS. floridanushave greater capacities for force and power, respectively, than those in adults, suggesting these muscle properties may be a part of several compensatory features that promote enhanced acceleration performance in young rabbits. Overall, our study implies that body size constraints place larger, more mature rabbits at a disadvantage during acceleration, and that adults must develop hypertrophied muscles in order to maintain mechanical similarity in force and power capacities across development. These findings challenge the accepted understanding that juvenile animals are at a performance detriment relative to adults. Instead, for prey–predator interactions necessitating short intervals of high force and power generation relative to body mass, as demonstrated by rapid acceleration of cottontail rabbits fleeing predators, it may be the adults that struggle to keep pace with juveniles.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Journal of Anatomy
Page Range / eLocation ID:
p. 106-123
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis

    For many animals, the juvenile stage of life can be particularly perilous. Once independent, immature animals must often complete the same basic survival functions as adults despite smaller body size and other growth-related limits on performance. Because, by definition, juveniles have yet to reproduce, we should expect strong selection for mechanisms to offset these ontogenetic limitations, allowing individuals to reach reproductive adulthood and maintain Darwinian fitness. We use an integrated ontogenetic dataset on morphology, locomotor performance, and longevity in wild cottontail rabbits (Sylvilagus floridanus, Allen 1848) to test the hypothesis that prey animals are under selective pressure to maximize juvenile performance. We predicted that (1) juveniles would accelerate more quickly than adults, allowing them to reach adult-like escape speeds, and (2) juveniles with greater levels of performance should survive for longer durations in the wild, thus increasing their reproductive potential. Using high-speed video and force platform measurements, we quantified burst acceleration, escape speed, and mechanical power production in 38 wild-caught S. floridanus (26 juveniles, 12 adults; all rabbits >1 kg in body mass were designated to be adults, based on published growth curves and evidence of epiphyseal fusion). A subsample of 22 rabbits (15 juveniles, 7 adults) was fitted with radio-telemetry collars for documenting survivorship in the wild. We found that acceleration and escape speed peaked in the late juvenile period in S. floridanus, at an age range that coincides with a period of pronounced demographic attrition in wild populations. Differences in mass-specific mechanical power production explained ∼75% of the variation in acceleration across the dataset, indicating that juvenile rabbits outpace adults by producing more power per unit body mass. We found a positive, though non-significant, association between peak escape speed and survivorship duration in the wild, suggesting a complex relationship between locomotor performance and fitness in growing S. floridanus.

    more » « less
  2. Abstract

    Existing data suggest the extracellular matrix (ECM) of vertebrate skeletal muscle consists of several morphologically distinct layers: an endomysium, perimysium, and epimysium surrounding muscle fibers, fascicles, and whole muscles, respectively. These ECM layers are hypothesized to serve important functional roles within muscle, influencing passive mechanics, providing avenues for force transmission, and influencing dynamic shape changes during contraction. The morphology of the skeletal muscle ECM is well described in mammals and birds; however, ECM morphology in other vertebrate groups including amphibians, fish, and reptiles remains largely unexamined. It remains unclear whether a multilayered ECM is a common feature of vertebrate skeletal muscle, and whether functional roles attributed to the ECM should be considered in mechanical analyses of non‐mammalian and non‐avian muscle. To explore the prevalence of a multilayered ECM, we used a cell maceration and scanning electron microscopy technique to visualize the organization of ECM collagen in muscle from six vertebrates: bullfrogs (Lithobates catesbeianus), turkeys (Meleagris gallopavo), alligators (Alligator mississippiensis), cane toads (Rhinella marina), laboratory mice (Mus musculus), and carp (Cyprinus carpio). All muscles studied contained a collagen‐reinforced ECM with multiple morphologically distinct layers. An endomysium surrounding muscle fibers was apparent in all samples. A perimysium surrounding groups of muscle fibers was apparent in all but carp epaxial muscle; a muscle anatomically, functionally, and phylogenetically distinct from the others studied. An epimysium was apparent in all samples taken at the muscle periphery. These findings show that a multilayered ECM is a common feature of vertebrate muscle and suggest that a functionally relevant ECM should be considered in mechanical models of vertebrate muscle generally. It remains unclear whether cross‐species variations in ECM architecture are the result of phylogenetic, anatomical, or functional differences, but understanding the influence of such variation on muscle mechanics may prove a fruitful area for future research.

    more » « less
  3. Summary

    Small herbivores face risks of predation while foraging and are often forced to trade off food quality for safety. Life history, behaviour, and habitat of predator and prey can influence these trade‐offs. We compared how two sympatric rabbits (pygmy rabbit,Brachylagus idahoensis; mountain cottontail,Sylvilagus nuttallii) that differ in size, use of burrows, and habitat specialization in the sagebrush‐steppe of westernNorthAmerica respond to amount and orientation of concealment cover and proximity to burrow refuges when selecting food patches. We predicted that both rabbit species would prefer food patches that offered greater concealment and food patches that were closer to burrow refuges. However, because pygmy rabbits are small, obligate burrowers that are restricted to sagebrush habitats, we predicted that they would show stronger preferences for greater cover, orientation of concealment, and patches closer to burrow refuges. We offered two food patches to individuals of each species during three experiments that either varied in the amount of concealment cover, orientation of concealment cover, or distance from a burrow refuge. Both species preferred food patches that offered greater concealment, but pygmy rabbits generally preferred terrestrial and mountain cottontails preferred aerial concealment. Only pygmy rabbits preferred food patches closer to their burrow refuge. Different responses to concealment and proximity to burrow refuges by the two species likely reflect differences in perceived predation risks. Because terrestrial predators are able to dig for prey in burrows, animals like pygmy rabbits that rely on burrow refuges might select food patches based more on terrestrial concealment. In contrast, larger habitat generalists that do not rely on burrow refuges, like mountain cottontails, might trade off terrestrial concealment for visibility to detect approaching terrestrial predators. This study suggests that body size and evolutionary adaptations for using habitat, even in closely related species, might influence anti‐predator behaviors in prey species.

    more » « less
  4. Ninety‐six juvenile specimens (37–54 mm standard length;LS) of the rarely collected Upward‐Mouth SpikefishAtrophacanthus japonicus(Triacanthodidae) were obtained from the stomachs of three Yellowfin TunaThunnus albacarescollected off Guam in the Mariana Islands in the central Pacific Ocean. These specimens extend the range ofA. japonicuseastward into Oceania. We review the systematic characters of the monotypic genusAtrophacanthusand present colour photographs of freshly collected specimens. The diet of the juvenile specimens ofA. japonicusconsisted of thecosome pteropods and foraminiferans. We present a range map ofA. japonicusbased on all known specimens and show that specimen size is related to whether specimens were collected in the pelagic zone or on the bottom. Our results support that, compared to all other Triacanthodidae,A. japonicushas an unusually extended pelagic larval and juvenile period, up to 54 mmLS, before settling to the bottom as adults. Lastly, we provide a multilocus phylogeny addressing the phylogenetic placement ofAtrophacanthusbased on eight of 11 triacanthodid genera and six genetic markers. Our results reveal thatAtrophacanthusis the sister group ofMacrorhamphosodesand they provide new insights about the evolutionary history of the family.

    more » « less
  5. Fatty‐acid (FA) profiles of liver and muscle tissue from juvenile Atlantic croakerMicropogonias undulatuswere examined over a 15 week diet‐switch experiment to establish calibration coefficients (CC) and improve understanding of consumer–diet relationships for field applications. EssentialFAs[docosahexaenoic acid (DHA), 22:6n‐3 and eicosapentaenoic acid (EPA) , 20:5n‐3] decreased and 18:2n‐6 increased in tissues ofM. undulatusfed diets with increasing proportions of terrestrialv.marine lipid sources. Non‐linear models used to estimate the incorporation rate and days to saturation of per cent 18:2n‐6 in tissues showed that livers incorporated 18:2n‐6 faster than muscle, but the proportions of 18:2n‐6 in muscle were higher.CCswere established to determine proportions ofFAdeposition in tissues relative to diet. ManyCCswere consistent amongst diet treatments, despite growth and dietary differences. TheCCscan be used to discernFAmodification and retention within tissues and as tools for future quantitative estimates of diet histories. Incorporation rates andCCsof 18:2n‐6 were applied to a sub‐set of field samples of wildM. undulatusto understand habitat use and feeding ecology. Altogether, these results suggest thatFAsprovide a time‐integrated measure of diet in aquatic food webs and are affected by tissue type, growth rate and the influence of mixed diets.

    more » « less