skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Properties of the Stimulated Electromagnetic Emissions During the Inclined High‐Frequency Pumping of the Ionosphere Near the Fourth Electron Gyroharmonic at the High‐Frequency Active Auroral Research Program Facility
Abstract Many phenomena in the high‐frequency pumped ionosphere exhibit dependence on the pump beam incident angleα. This motivates a systematic study of theαdependence of the stimulated electromagnetic emission (SEE), particularly near electron gyroharmonics. We report the first observations of stationary SEE spectra forαranging from −28° (north) to 28° (south) at three receiving sites, for the pump frequency (f0) sweeping near the fourth gyroharmonic (4fc). The following is established: (i) For pumping near the magnetic zenith (α= 7°, 14°, 21°), when existent dynamic broad upshifted maximum in the SEE spectrum indicates that artificial ionization layers are excited, suppression of the downshifted maximum atf0≈ 4fсis weakest, and 4fсincreases. (ii) Weaker similar effects occur forα= −14° (a condition called “mirror magnetic zenith”). (iii) For northern pump beam inclinations, the SEE intensity decreases (in comparison with southern inclinations and vertical), most strongly at the southernmost receiving site.  more » « less
Award ID(s):
1915058
PAR ID:
10460362
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
46
Issue:
11
ISSN:
0094-8276
Page Range / eLocation ID:
p. 5653-5661
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Diffuse radio recombination lines (RRLs) in the Galaxy are possible foregrounds for redshifted 21 cm experiments. We use EDGES drift scans centered at −26.°7 decl. to characterize diffuse RRLs across the southern sky. We find that RRLs averaged over the large antenna beam (72° × 110°) reach minimum amplitudes of R.A. = 2–6 hr. In this region, the Cαabsorption amplitude is 33 ± 11 mK (1σ) averaged over 50–87 MHz (27 ≳z≳ 15 for the 21 cm line) and increases strongly as frequency decreases. Cβand Hαlines are consistent with no detection with amplitudes of 13 ± 14 and 12 ± 10 mK (1σ), respectively. At 108–124.5 MHz (z≈ 11) in the same region, we find no evidence for carbon or hydrogen lines at the noise level of 3.4 mK (1σ). Conservatively assuming that observed lines come broadly from the diffuse interstellar medium, as opposed to a few compact regions, these amplitudes provide upper limits on the intrinsic diffuse lines. The observations support expectations that Galactic RRLs can be neglected as significant foregrounds for a large region of sky until redshifted 21 cm experiments, particularly those targeting cosmic dawn, move beyond the detection phase. We fit models of the spectral dependence of the lines averaged over the large beam of EDGES, which may contain multiple line sources with possible line blending, and find that including degrees of freedom for expected smooth, frequency-dependent deviations from local thermodynamic equilibrium (LTE) is preferred over simple LTE assumptions for Cαand Hαlines. For Cαwe estimate departure coefficients 0.79 <bnβn< 4.5 along the inner Galactic plane and 0 <bnβn< 2.3 away from the inner Galactic plane. 
    more » « less
  2. Abstract We  present the demography of the dynamics and gas mass fraction of 33 extremely metal-poor galaxies (EMPGs) with metallicities of 0.015–0.195Zand low stellar masses of 104–108Min the local universe. We conduct deep optical integral field spectroscopy (IFS) for the low-mass EMPGs with the medium-high resolution (R= 7500) grism of the 8 m Subaru FOCAS IFU instrument by the EMPRESS 3D survey, and investigate the Hαemission of the EMPGs. Exploiting the resolution high enough for the low-mass galaxies, we derive gas dynamics with the Hαlines by the fitting of three-dimensional disk models. We obtain an average maximum rotation velocity (vrot) of 15 ± 3 km s−1and an average intrinsic velocity dispersion (σ0) of 27 ± 10 km s−1for 15 spatially resolved EMPGs out of 33 EMPGs, and find that all 15 EMPGs havevrot0< 1 suggesting dispersion-dominated systems. There is a clear decreasing trend ofvrot0with the decreasing stellar mass and metallicity. We derive the gas mass fraction (fgas) for all 33 EMPGs, and find no clear dependence on stellar mass and metallicity. Thesevrot0andfgastrends should be compared with young high-zgalaxies observed by the forthcoming JWST IFS programs to understand the physical origins of the EMPGs in the local universe. 
    more » « less
  3. Abstract The present study addresses two basic questions related to banded chorus waves in the Earth’s magnetosphere: 1) are chorus spectral gaps formed near the equatorial source region or during propagation away from the equator? and 2) why are chorus spectral gaps usually located below 0.5fce(fce: electron gyro‐frequency)? By analyzing Van Allen Probes data, we demonstrate that chorus spectral gaps are observed in the source region where chorus waves propagate both in the parallel and anti‐parallel directions to the magnetic field. Chorus spectral gaps below 0.5fceare associated with electron parallel acceleration at energies above the equatorial Landau resonant energies. We explain that initially generated chorus waves quickly isotropize the electron distribution through Landau resonant acceleration, and the isotropization occurs for higher energies at higher latitudes. The isotropized population, after returning to the magnetic equator, leads to a chorus gap typically below 0.5fceby suppressing wave excitation. 
    more » « less
  4. Abstract In this study, using Van Allen Probes observations we identify 81 events of electron flux bursts with butterfly pitch angle distributions for tens of keV electrons with close correlations with chorus wave bursts in the Earth's magnetosphere. We use the high‐rate electron flux data from Magnetic Electron Ion Spectrometer available during 2013–2019 and the simultaneous whistler‐mode wave measurements from Electric and Magnetic Field Instrument Suite and Integrated Science to identify the correlated events. The events are categorized into 67 upper‐band chorus (0.5–0.8fce) dominated events and 14 other events where lower‐band chorus (0.05–0.5fce) has modest or strong amplitudes (fcerepresents electron cyclotron frequency). Each electron flux burst correlated with chorus has a short timescale of ∼1 min or less, suggesting potential nonlinear effects. The statistical distribution of selected electron burst events tends to occur in the post‐midnight sector atL > 5 under disturbed geomagnetic conditions, and is associated with chorus waves with relatively strong magnetic wave amplitude and small wave normal angle. The frequency dependence of the electron flux peaks agrees with the cyclotron resonant condition, indicating the effects of chorus‐induced electron acceleration. Our study provides new insights into understanding the rapid nonlinear interactions between chorus and energetic electrons. 
    more » « less
  5. Abstract The High-Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory, located on the side of the Sierra Negra volcano in Mexico, has been fully operational since 2015. The HAWC collaboration has recently significantly improved their extensive air shower reconstruction algorithms, which has notably advanced the observatory performance. The energy resolution for primary gamma rays with energies below 1 TeV was improved by including a noise-suppression algorithm. Corrections have also been made to systematic errors in direction fitting related to the detector and shower plane inclinations, O ( 0 1 ) biases in highly inclined showers, and enhancements to the core reconstruction. The angular resolution for gamma rays approaching the HAWC array from large zenith angles (>37°) has improved by a factor of 4 at the highest energies (>70 TeV) as compared to previous reconstructions. The inclusion of a lateral distribution function fit to the extensive air shower footprint on the array to separate gamma-ray primaries from cosmic-ray ones based on the resultingχ2values improved the background rejection performance at all inclinations. At large zenith angles, the improvement in significance is a factor of 4 compared to previous HAWC publications. These enhancements have been verified by observing the Crab Nebula, which is an overhead source for the HAWC Observatory. We show that the sensitivity to Crab-like point sources (E−2.63) with locations overhead to 30° zenith is comparable to or less than 10% of the Crab Nebula’s flux between 2 and 50 TeV. Thanks to these improvements, HAWC can now detect more sources, including the Galactic center. 
    more » « less