skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.


Title: EMPRESS. XII. Statistics on the Dynamics and Gas Mass Fraction of Extremely Metal-poor Galaxies
Abstract

We  present the demography of the dynamics and gas mass fraction of 33 extremely metal-poor galaxies (EMPGs) with metallicities of 0.015–0.195Zand low stellar masses of 104–108Min the local universe. We conduct deep optical integral field spectroscopy (IFS) for the low-mass EMPGs with the medium-high resolution (R= 7500) grism of the 8 m Subaru FOCAS IFU instrument by the EMPRESS 3D survey, and investigate the Hαemission of the EMPGs. Exploiting the resolution high enough for the low-mass galaxies, we derive gas dynamics with the Hαlines by the fitting of three-dimensional disk models. We obtain an average maximum rotation velocity (vrot) of 15 ± 3 km s−1and an average intrinsic velocity dispersion (σ0) of 27 ± 10 km s−1for 15 spatially resolved EMPGs out of 33 EMPGs, and find that all 15 EMPGs havevrot/σ0< 1 suggesting dispersion-dominated systems. There is a clear decreasing trend ofvrot/σ0with the decreasing stellar mass and metallicity. We derive the gas mass fraction (fgas) for all 33 EMPGs, and find no clear dependence on stellar mass and metallicity. Thesevrot/σ0andfgastrends should be compared with young high-zgalaxies observed by the forthcoming JWST IFS programs to understand the physical origins of the EMPGs in the local universe.

 
more » « less
NSF-PAR ID:
10485604
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
961
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 49
Size(s):
["Article No. 49"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present kinematics of six local extremely metal-poor galaxies (EMPGs) with low metallicities (0.016–0.098Z) and low stellar masses (104.7–107.6M). Taking deep medium/high-resolution (R∼ 7500) integral-field spectra with 8.2 m Subaru, we resolve the small inner velocity gradients and dispersions of the EMPGs with Hαemission. Carefully masking out substructures originating by inflow and/or outflow, we fit three-dimensional disk models to the observed Hαflux, velocity, and velocity dispersion maps. All the EMPGs show rotational velocities (vrot) of 5–23 km s−1smaller than the velocity dispersions (σ0) of 17–31 km s−1, indicating dispersion-dominated (vrot/σ0= 0.29–0.80 < 1) systems affected by inflow and/or outflow. Except for two EMPGs with large uncertainties, we find that the EMPGs have very large gas-mass fractions offgas≃ 0.9–1.0. Comparing our results with other Hαkinematics studies, we find thatvrot/σ0decreases andfgasincreases with decreasing metallicity, decreasing stellar mass, and increasing specific star formation rate. We also find that simulated high-z(z∼ 7) forming galaxies have gas fractions and dynamics similar to the observed EMPGs. Our EMPG observations and the simulations suggest that primordial galaxies are gas-rich dispersion-dominated systems, which would be identified by the forthcoming James Webb Space Telescope observations atz∼ 7.

     
    more » « less
  2. Abstract

    We present elemental abundance patterns (C, N, Mg, Si, Ca, Ti, V, Cr, Fe, Co, and Ni) for a population of 135 massive quiescent galaxies atz∼ 0.7 with ultra-deep rest-frame optical spectroscopy drawn from the LEGA-C survey. We derive average ages and elemental abundances in four bins of stellar velocity dispersion (σv) ranging from 150–250 km s−1using a full-spectrum hierarchical Bayesian model. The resulting elemental abundance measurements are precise to 0.05 dex. The majority of elements, as well as the total metallicity and stellar age, show a positive correlation withσv. Thus, the highest dispersion galaxies formed the earliest and are the most metal-rich. We find only mild or nonsignificant trends between [X/Fe] andσv, suggesting that the average star formation timescale does not strongly depend on velocity dispersion. To first order, the abundance patterns of thez∼ 0.7 quiescent galaxies are strikingly similar to those atz∼ 0. However, at the lowest-velocity dispersions, thez∼ 0.7 galaxies have slightly enhanced N, Mg, Ti, and Ni abundance ratios and earlier formation redshifts than theirz∼ 0 counterparts. Thus, while the higher-mass quiescent galaxy population shows little evolution, the low-mass quiescent galaxies population has grown significantly over the past 6 Gyr. Finally, the abundance patterns of bothz∼ 0 andz∼ 0.7 quiescent galaxies differ considerably from theoretical prediction based on a chemical evolution model, indicating that our understanding of the enrichment histories of these galaxies is still very limited.

     
    more » « less
  3. We study the dynamics of cold molecular gas in two main-sequence galaxies at cosmic noon (zC-488879 at z  ≃ 1.47 and zC-400569 at z  ≃ 2.24) using new high-resolution ALMA observations of multiple 12 CO transitions. For zC-400569 we also reanalyze high-quality H α data from the SINS/zC-SINF survey. We find that (1) both galaxies have regularly rotating CO disks and their rotation curves are flat out to ∼8 kpc contrary to previous results pointing to outer declines in the rotation speed V rot ; (2) the intrinsic velocity dispersions are low ( σ CO  ≲ 15 km s −1 for CO and σ Hα  ≲ 37 km s −1 for H α ) and imply V rot / σ CO  ≳ 17 − 22 yielding no significant pressure support; (3) mass models using HST images display a severe disk-halo degeneracy, that is models with inner baryon dominance and models with “cuspy” dark matter halos can fit the rotation curves equally well due to the uncertainties on stellar and gas masses; and (4) Milgromian dynamics (MOND) can successfully fit the rotation curves with the same acceleration scale a 0 measured at z  ≃ 0. The question of the amount and distribution of dark matter in high- z galaxies remains unsettled due to the limited spatial extent of the available kinematic data; we discuss the suitability of various emission lines to trace extended rotation curves at high z . Nevertheless, the properties of these two high- z galaxies (high V rot / σ V ratios, inner rotation curve shapes, bulge-to-total mass ratios) are remarkably similar to those of massive spirals at z  ≃ 0, suggesting weak dynamical evolution over more than 10 Gyr of the Universe’s lifetime. 
    more » « less
  4. Abstract

    We present the discovery of neutral gas detected in both damped Lyαabsorption (DLA) and Hi21 cm emission outside of the stellar body of a galaxy, the first such detection in the literature. A joint analysis between the Cosmic Ultraviolet Baryon Survey and the MeerKAT Absorption Line Survey reveals an Hibridge connecting two interacting dwarf galaxies (log (Mstar/M) = 8.5 ± 0.2) that host az= 0.026 DLA with log[N(Hi)/cm−2] = 20.60 ± 0.05 toward the QSO J2339−5523 (zQSO= 1.35). At impact parameters ofd= 6 and 33 kpc, the dwarf galaxies have no companions more luminous than ≈0.05L*within at least Δv= ±300 km s−1andd≈ 350 kpc. The Hi21 cm emission is spatially coincident with the DLA at the 2σ–3σlevel per spectral channel over several adjacent beams. However, Hi21 cm absorption is not detected against the radio-bright QSO; if the background UV and radio sources are spatially aligned, the gas is either warm or clumpy (with a spin temperature to covering factor ratioTs/fc> 1880 K). Observations with VLT-MUSE demonstrate that theα-element abundance of the ionized interstellar medium (ISM) is consistent with the DLA (≈10% solar), suggesting that the neutral gas envelope is perturbed ISM gas. This study showcases the impact of dwarf–dwarf interactions on the physical and chemical state of neutral gas outside of star-forming regions. In the SKA era, joint UV and Hi21 cm analyses will be critical for connecting the cosmic neutral gas content to galaxy environments.

     
    more » « less
  5. Abstract

    We use medium-resolution Keck/Echellette Spectrograph and Imager spectroscopy of bright quasars to study cool gas traced by Caiiλλ3934, 3969 and Naiλλ5891, 5897 absorption in the interstellar/circumgalactic media of 21 foreground star-forming galaxies at redshifts 0.03 <z< 0.20 with stellar masses 7.4 ≤ logM*/M≤ 10.6. The quasar–galaxy pairs were drawn from a unique sample of Sloan Digital Sky Survey quasar spectra with intervening nebular emission, and thus have exceptionally close impact parameters (R< 13 kpc). The strength of this line emission implies that the galaxies’ star formation rates (SFRs) span a broad range, with several lying well above the star-forming sequence. We use Voigt profile modeling to derive column densities and component velocities for each absorber, finding that column densitiesN(Caii) > 1012.5cm−2(N(Nai) > 1012.0cm−2) occur with an incidencefC(Caii) = 0.63+0.10−0.11(fC(Nai) = 0.57+0.10−0.11). We find no evidence for a dependence offCor the rest-frame equivalent widthsWr(CaiiK) orWr(Nai5891) onRorM*. Instead,Wr(CaiiK) is correlated with local SFR at >3σsignificance, suggesting that Caiitraces star formation-driven outflows. While most of the absorbers have velocities within ±50 km s−1of the host redshift, their velocity widths (characterized by Δv90) are universally 30–177 km s−1larger than that implied by tilted-ring modeling of the velocities of interstellar material. These kinematics must trace galactic fountain flows and demonstrate that they persist atR> 5 kpc. Finally, we assess the relationship between dust reddening andWr(CaiiK) (Wr(Nai5891)), finding that 33% (24%) of the absorbers are inconsistent with the best-fit Milky WayE(B−V)-Wrrelations at >3σsignificance.

     
    more » « less