skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enabling Tailorable Optical Properties and Markedly Enhanced Stability of Perovskite Quantum Dots by Permanently Ligating with Polymer Hairs
Abstract Instability of perovskite quantum dots (QDs) toward humidity remains one of the major obstacles for their long‐term use in optoelectronic devices. Herein, a general amphiphilic star‐like block copolymer nanoreactor strategy for in situ crafting a set of hairy perovskite QDs with precisely tunable size and exceptionally high water and colloidal stabilities is presented. The selective partition of precursors within the compartment occupied by inner hydrophilic blocks of star‐like diblock copolymers imparts in situ formation of robust hairy perovskite QDs permanently ligated by outer hydrophobic blocks via coprecipitation in nonpolar solvent. These size‐ and composition‐tunable perovskite QDs reveal impressive water and colloidal stabilities as the surface of QDs is intimately and permanently ligated by a layer of outer hydrophobic polymer hairs. More intriguingly, the readily alterable length of outer hydrophobic polymers renders the remarkable control over the stability enhancement of hairy perovskite QDs.  more » « less
Award ID(s):
1914713 1727313
PAR ID:
10460504
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
31
Issue:
32
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The past few years have witnessed rapid advances in the synthesis of high-quality perovskite nanocrystals (PNCs). However, despite the impressive developments, the stability of PNCs remains a substantial challenge. The ability to reliably improve stability of PNCs while retaining their individual nanometer size represents a critical step that underpins future advances in optoelectronic applications. Here, we report an unconventional strategy for crafting dual-shelled PNCs (i.e., polymer-ligated perovskite/SiO 2 core/shell NCs) with exquisite control over dimensions, surface chemistry, and stabilities. In stark contrast to conventional methods, our strategy relies on capitalizing on judiciously designed star-like copolymers as nanoreactors to render the growth of core/shell NCs with controlled yet tunable perovskite core diameter, SiO 2 shell thickness, and surface chemistry. Consequently, the resulting polymer-tethered perovskite/SiO 2 core/shell NCs display concurrently a stellar set of substantially improved stabilities (i.e., colloidal stability, chemical composition stability, photostability, water stability), while having appealing solution processability, which are unattainable by conventional methods. 
    more » « less
  2. Abstract Approaches to achieve stable perovskite nanocrystals (PNCs) of interest, in particular those with large structural anisotropy, through protective coating of the inorganic shell at a single‐nanocrystal (NC) level are comparatively few and limited in scope. Reported here is a robust amphiphilic‐diblock‐copolymer‐enabled strategy for crafting highly‐stableanisotropicCsPbBr3nanosheets (NSs) by in situ formation of a uniform inorganic shell (1st shielding) that is intimately ligated with hydrophobic polymers (2nd shielding). The dual‐protected NSs display an array of remarkable stabilities (i.e., thermal, photostability, moisture, polar solvent, aliphatic amine, etc.) and find application in white‐light‐emitting diodes. In principle, by anchoring other multidentate amphiphilic polymer ligands on the surface of PNCs, followed by templated‐growth of shell materials of interest, a rich variety of dual‐shelled, multifunctional PNCs with markedly improved stabilities can be created for use in optics, optoelectronics, and sensory devices. 
    more » « less
  3. Abstract Colloidal all‐inorganic lead halide perovskite quantum dots (QDs) are high‐performance light‐emitting materials with size‐dependent optical properties and can be readily synthesized by mixing ionic precursors. However, the low formation energy of the perovskite lattice makes their growth too fast to control under regular reaction conditions. Diffusion‐regulated CsPbBr3perovskite QD growth is reported on a nanometer‐sized liquid/liquid (L/L) interface supported in a micropipette tip without long‐chain organic ligands. The precursors are divided into two immiscible solutions across the L/L interface to avoid additional nucleation, and the QD growth kinetics are regulated by the constrained cationic diffusion field depending on the size of the micropipette tip. QDs with unprecedentedly small sizes (2.7 nm) are obtained due to the slowed‐down growth rates. The synthesis approach demonstrates the potential of micro‐controlled colloidal QD synthesis for mechanistic studies and micro‐fabrications. 
    more » « less
  4. Lead halide perovskite nanocrystals possess incredible potential as next generation emitters due to their stellar set of optoelectronic properties. Unfortunately, their instability towards many ambient conditions and reliance on batch processing hinder their widespread utilities. Herein, we address both challenges by continuously synthesizing highly stable perovskite nanocrystals via integrating star-like block copolymer nanoreactors into a house-built flow reactor. Perovskite nanocrystals manufactured in this strategy display significantly enhanced colloidal, UV, and thermal stabilities over those synthesized with conventional ligands. Such scaling up of highly stable perovskite nanocrystals represents an important step towards their eventual use in many practical applications in optoelectronic materials and devices. 
    more » « less
  5. Abstract The long‐term operational stability of perovskite solar cells (PSCs) remains a key challenge impeding their commercialization, particularly due to ambient environments (e.g., moisture, oxygen, heat)‐induced degradation. Carbon electrode‐based PSCs have emerged as cost‐effective and relatively stable alternatives to metal electrode‐based devices due to carbon materials' hydrophobic behavior, yet they still lag in both long‐term durability and power conversion efficiency (PCE). In this work, an ultrathin hydrophobic ligand‐modified core–shell Cd(S,Se)/ZnS quantum dots (QDs) capping layer is introduced as a multifunctional interfacial modifier for carbon‐electrode‐based PSCs. This oleic acid ligand‐modified QDs capping layer exhibits inherent hydrophobicity, effectively serving as a moisture barrier to retard perovskite degradation under ambient conditions. Furthermore, the strong interfacial bonding between the QDs and perovskite halide surfaces leads to efficient trap state passivation, reducing trap density and creating a more uniform electrical contact. The modified QDs/perovskite interface also features an elevated conduction band edge, promoting improved charge extraction. As a result, devices incorporating this quantum dot capping layer retain 98% of their initial PCE after 450 h of ambient aging and achieve a champion efficiency of 20.74%. This strategy highlights the potential of hydrophobic ligand‐modified chalcogenide QDs as surface modifiers to enhance both the stability and performance of carbon‐based PSCs, offering a promising route toward scalable fabrication of durable perovskite solar modules. 
    more » « less