skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enabling Tailorable Optical Properties and Markedly Enhanced Stability of Perovskite Quantum Dots by Permanently Ligating with Polymer Hairs
Abstract Instability of perovskite quantum dots (QDs) toward humidity remains one of the major obstacles for their long‐term use in optoelectronic devices. Herein, a general amphiphilic star‐like block copolymer nanoreactor strategy for in situ crafting a set of hairy perovskite QDs with precisely tunable size and exceptionally high water and colloidal stabilities is presented. The selective partition of precursors within the compartment occupied by inner hydrophilic blocks of star‐like diblock copolymers imparts in situ formation of robust hairy perovskite QDs permanently ligated by outer hydrophobic blocks via coprecipitation in nonpolar solvent. These size‐ and composition‐tunable perovskite QDs reveal impressive water and colloidal stabilities as the surface of QDs is intimately and permanently ligated by a layer of outer hydrophobic polymer hairs. More intriguingly, the readily alterable length of outer hydrophobic polymers renders the remarkable control over the stability enhancement of hairy perovskite QDs.  more » « less
Award ID(s):
1914713 1727313
PAR ID:
10460504
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
31
Issue:
32
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The past few years have witnessed rapid advances in the synthesis of high-quality perovskite nanocrystals (PNCs). However, despite the impressive developments, the stability of PNCs remains a substantial challenge. The ability to reliably improve stability of PNCs while retaining their individual nanometer size represents a critical step that underpins future advances in optoelectronic applications. Here, we report an unconventional strategy for crafting dual-shelled PNCs (i.e., polymer-ligated perovskite/SiO 2 core/shell NCs) with exquisite control over dimensions, surface chemistry, and stabilities. In stark contrast to conventional methods, our strategy relies on capitalizing on judiciously designed star-like copolymers as nanoreactors to render the growth of core/shell NCs with controlled yet tunable perovskite core diameter, SiO 2 shell thickness, and surface chemistry. Consequently, the resulting polymer-tethered perovskite/SiO 2 core/shell NCs display concurrently a stellar set of substantially improved stabilities (i.e., colloidal stability, chemical composition stability, photostability, water stability), while having appealing solution processability, which are unattainable by conventional methods. 
    more » « less
  2. Abstract Approaches to achieve stable perovskite nanocrystals (PNCs) of interest, in particular those with large structural anisotropy, through protective coating of the inorganic shell at a single‐nanocrystal (NC) level are comparatively few and limited in scope. Reported here is a robust amphiphilic‐diblock‐copolymer‐enabled strategy for crafting highly‐stableanisotropicCsPbBr3nanosheets (NSs) by in situ formation of a uniform inorganic shell (1st shielding) that is intimately ligated with hydrophobic polymers (2nd shielding). The dual‐protected NSs display an array of remarkable stabilities (i.e., thermal, photostability, moisture, polar solvent, aliphatic amine, etc.) and find application in white‐light‐emitting diodes. In principle, by anchoring other multidentate amphiphilic polymer ligands on the surface of PNCs, followed by templated‐growth of shell materials of interest, a rich variety of dual‐shelled, multifunctional PNCs with markedly improved stabilities can be created for use in optics, optoelectronics, and sensory devices. 
    more » « less
  3. Lead halide perovskite nanocrystals possess incredible potential as next generation emitters due to their stellar set of optoelectronic properties. Unfortunately, their instability towards many ambient conditions and reliance on batch processing hinder their widespread utilities. Herein, we address both challenges by continuously synthesizing highly stable perovskite nanocrystals via integrating star-like block copolymer nanoreactors into a house-built flow reactor. Perovskite nanocrystals manufactured in this strategy display significantly enhanced colloidal, UV, and thermal stabilities over those synthesized with conventional ligands. Such scaling up of highly stable perovskite nanocrystals represents an important step towards their eventual use in many practical applications in optoelectronic materials and devices. 
    more » « less
  4. Abstract Patterning of quantum dots (QDs) is essential for many, especially high‐tech, applications. Here, pH tunable assembly of QDs over functional patterns prepared by electrohydrodynamic jet printing of poly(2‐vinylpyridine) is presented. The selective adsorption of QDs from water dispersions is mediated by the electrostatic interaction between the ligand composed of 3‐mercaptopropionic acid and patterned poly(2‐vinylpyridine). The pH of the dispersion provides tunability at two levels. First, the adsorption density of QDs and fluorescence from the patterns can be modulated for pH > ≈4. Second, patterned features show unique type of disintegration resulting in randomly positioned features within areas defined by the printing for pH ≤ ≈4. The first capability is useful for deterministic patterning of QDs, whereas the second one enables hierarchically structured encoding of information by generating stochastic features of QDs within areas defined by the printing. This second capability is exploited for generating addressable security labels based on unclonable features. Through image analysis and feature matching algorithms, it is demonstrated that such patterns are unclonable in nature and provide a suitable platform for anti‐counterfeiting applications. Collectively, the presented approach not only enables effective patterning of QDs, but also establishes key guidelines for addressable assembly of colloidal nanomaterials. 
    more » « less
  5. null (Ed.)
    The past decade has witnessed tremendous advances in synthesis of metal halide perovskites and their use for a rich variety of optoelectronics applications. Metal halide perovskite has the general formula ABX 3 , where A is a monovalent cation (which can be either organic ( e.g. , CH 3 NH 3 + (MA), CH(NH 2 ) 2 + (FA)) or inorganic ( e.g. , Cs + )), B is a divalent metal cation (usually Pb 2+ ), and X is a halogen anion (Cl − , Br − , I − ). Particularly, the photoluminescence (PL) properties of metal halide perovskites have garnered much attention due to the recent rapid development of perovskite nanocrystals. The introduction of capping ligands enables the synthesis of colloidal perovskite nanocrystals which offer new insight into dimension-dependent physical properties compared to their bulk counterparts. It is notable that doping and ion substitution represent effective strategies for tailoring the optoelectronic properties ( e.g. , absorption band gap, PL emission, and quantum yield (QY)) and stabilities of perovskite nanocrystals. The doping and ion substitution processes can be performed during or after the synthesis of colloidal nanocrystals by incorporating new A′, B′, or X′ site ions into the A, B, or X sites of ABX 3 perovskites. Interestingly, both isovalent and heterovalent doping and ion substitution can be conducted on colloidal perovskite nanocrystals. In this review, the general background of perovskite nanocrystals synthesis is first introduced. The effects of A-site, B-site, and X-site ionic doping and substitution on the optoelectronic properties and stabilities of colloidal metal halide perovskite nanocrystals are then detailed. Finally, possible applications and future research directions of doped and ion-substituted colloidal perovskite nanocrystals are also discussed. 
    more » « less