skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fluorous Metal–Organic Frameworks and Nonporous Coordination Polymers as Low‐κ Dielectrics
Abstract A fluorous metal–organic framework [Cu(FBTB)(DMF)] (FMOF‐3) [H2FBTB = 1,4‐bis(1‐H‐tetrazol‐5‐yl)tetrafluorobenzene] and fluorous nonporous coordination polymer [Ag2(FBTB)] (FN‐PCP‐1) are synthesized and characterized as for their structural, thermal, and textural properties. Together with the corresponding nonfluorinated analogues lc‐[Cu(BTB)(DMF)] and [Ag2(BTB)], and two known (super)hydrophobic MOFs, FMOF‐1 and ZIF‐8, they have been investigated as low‐dielectric constant (low‐κ) materials under dry and humid conditions. The results show that substitution of hydrogen with fluorine or fluoroalkyl groups on the organic linker imparts higher hydrophobicity and lower polarizability to the overall material. Pellets of FMOF‐1, FMOF‐3, and FN‐PCP‐1 exhibit κ values of 1.63(1), 2.44(3), and 2.57(3) at 2 × 106Hz, respectively, under ambient conditions, versus 2.94(8) and 3.79(1) for lc‐[Cu(BTB)(DMF)] and [Ag2(BTB)], respectively. Such low‐κ values persist even upon exposure to almost saturated humidity levels. Correcting for the experimental pellet density, the intrinsic κ for FMOF‐1 reaches the remarkably low value of 1.28, the lowest value known to date for a hydrophobic material.  more » « less
Award ID(s):
1726652
PAR ID:
10460521
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
29
Issue:
40
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nitrous acid (HONO) plays pivotal roles in various metal‐free as well as metal‐mediated routes relevant to biogeochemistry, atmospheric chemistry, and mammalian physiology. While the metastable nature of HONO hinders the detailed investigations into its reactivity at a transition metal site, this report herein utilizes a heteroditopic copper(II) cryptate [oC]CuIIfeaturing a proton‐responsive second‐coordination‐sphere located at a suitable distance from a [CuII](ONO) core, thereby enabling isolation of a [CuII](κ1‐ONO⋅⋅⋅H+) complex (2H‐NO2). A set of complementary analytical studies (UV‐vis,14N/15N FTIR,15N NMR, HRMS, EPR, and CHN) on2H‐NO2and its15N‐isotopomer (2H‐15NO2) reveals the formulation of2H‐NO2as {[oCH]CuII1‐ONO)}(ClO4)2. Non‐covalent interaction index (NCI) based on reduced density gradient (RDG) analysis on {[oCH]CuII1‐ONO)}2+discloses a H‐bonding interaction between the apical 3° ammonium site and the nitrite anion bound to the copper(II) site. The FTIR spectra of [CuII](κ1‐ONO⋅⋅⋅H+) species (2H‐NO2) shows a shift of ammonium NH vibrational feature to a lower wavenumber due to the H‐bonding interaction with nitrite. The reactivity profile of [CuII](κ1‐ONO⋅⋅⋅H+) species (2H‐NO2) towards anaerobic nitration of substituted phenol (2,4‐DTBP) is distinctly different relative to that of the closely related tripodal [CuII]‐nitrite complexes (1‐NO2/3‐NO2/4‐NO2). 
    more » « less
  2. A series of Ag( i ) and Cu( i ) complexes [Ag 3 (L 1 ) 2 ][PF 6 ] 3 ( 8 ), [Ag 3 (L 2 ) 2 ][PF 6 ] 3 ( 9 ), [Cu(L 1 )][PF 6 ] ( 10 ) and [Cu(L 2 )][PF 6 ] ( 11 ) have been synthesized by reactions of the tridentate amine-bis(N-heterocyclic carbene) ligand precursors [H 2 L 1 ][PF 6 ] 2 ( 6 ) and [H 2 L 2 ][PF 6 ] 2 ( 7 ) with Ag 2 O and Cu 2 O, respectively. Complexes 10 and 11 can also be obtained by transmetalation of 8 and 9 , respectively, with 3.0 equiv. of CuCl. A heterometallic Cu/Ag–NHC complex [Cu 2 Ag(L 1 ) 2 (CH 3 CN) 2 ][PF 6 ] 3 ( 12 ) is formed by the reaction of 8 with 2.0 equiv. of CuCl. All complexes have been characterized by NMR, electrospray ionization mass spectrometry (ESI-MS), and single-crystal X-ray diffraction studies. The luminescence properties of 10–12 in solution and the solid state have been studied. At room temperature, 10–12 exhibit evident luminescence in solution and the solid state. The emission wavelengths are found to be identical at 483 nm in CH 3 CN, but they are 484, 480 and 592 nm in the solid state for 10–12 , respectively. These results suggest that 12 dissociates into two molecules of 10 and Ag( i ) ions in solution. Complex 12 is the first luminescent heterometallic Cu/Ag–NHC complex. 
    more » « less
  3. Quaternary metal‐chalcogenides combining rare‐earth cations with late transition metal cations are attracting growing attention for their optical properties, such as for solar energy conversion or second harmonic generation. Synthetic explorations of theII3‐I2‐IV2‐Ch8family (II = Eu;I = Cu or Ag;IV = Si, Ch = S or Se) have yielded Eu3Ag2Si2S8(1) and Eu3Cu1.08(1)Si2.42(1)Se8(2). Their structures have been characterized by X‐ray diffraction to form in the noncentrosymmetric space groupI3dand to exhibit two distinct types of mixed‐site occupancies, for the Ag(I) cations in1and mixed Cu(I)/Si(IV) cations in2. In both, the cation disorder occurs to achieve charge balancing with the chalcogenide anions. A high yield of1can be achievedwith optical measurements showing indirect and direct band transitions of ≈2.2(1) and ≈2.4(1) eV, respectively. Its second harmonic generation response is found to be relatively strong, approximately 0.9 × AgGaS2, confirming its noncentrosymmetric structure. Band structure calculations reveal the valence and conduction band edges stem predominantly from the filled Ag(I)/Cu(I)‐based states and empty Si(IV)‐based states, respectively, with additional contributions from the chalcogenide anions. Calculation results also show that cation disorder facilitates a reduction in the antibonding interactions between the Ag(I)/Cu(I)d‐based and chalcogenidep‐based states. 
    more » « less
  4. Abstract The broad employment of water electrolysis for hydrogen (H2) production is restricted by its large voltage requirement and low energy conversion efficiency because of the sluggish oxygen evolution reaction (OER). Herein, we report a strategy to replace OER with a thermodynamically more favorable reaction, the partial oxidation of formaldehyde to formate under alkaline conditions, using a Cu3Ag7electrocatalyst. Such a strategy not only produces more valuable anodic product than O2but also releases H2at the anode with a small voltage input. Density functional theory studies indicate the H2C(OH)O intermediate from formaldehyde hydration can be better stabilized on Cu3Ag7than on Cu or Ag, leading to a lower C-H cleavage barrier. A two-electrode electrolyzer employing an electrocatalyst of Cu3Ag7(+)||Ni3N/Ni(–) can produce H2at both anode and cathode simultaneously with an apparent 200% Faradaic efficiency, reaching a current density of 500 mA/cm2with a cell voltage of only 0.60 V. 
    more » « less
  5. Abstract Low dimensional (LD) organic metal halide hybrids (OMHHs) have recently emerged as new generation functional materials with exceptional structural and property tunability. Despite the remarkable advances in the development of LD OMHHs, optical properties have been the major functionality extensively investigated for most of LD OMHHs developed to date, while other properties, such as magnetic and electronic properties, remain significantly under‐explored. Here, we report for the first time the characterization of the magnetic and electronic properties of a 1D OMHH, organic‐copper (II) chloride hybrid (C8H22N2)Cu2Cl6. Owing to the antiferromagnetic coupling between Cu atoms through chloride bridges in 1D [Cu2Cl62−]chains, (C8H22N2)Cu2Cl6is found to exhibit antiferromagnetic ordering with a Néel temperature of 24 K. The two‐terminal (2T) electrical measurement on a (C8H22N2)Cu2Cl6single crystal reveals its insulating nature. This work shows the potential of LD OMHHs as a highly tunable quantum material platform for spintronics. 
    more » « less