Diatoms are a group of single-celled photosynthetic algae that use biochemical pathways to bio-mineralize and self-assemble three-dimensional photonic crystals with unique photonic and micro- & nano-fluidic properties. In recent years, diatom biosilica has been used in surface-enhanced Raman scattering (SERS) based optofluidic sensors for detection of a variety of chemical and biological molecules. In this paper, we present a study to develop a microfluidic pumping system using super-hydrophilic diatom thin films. The desire to develop such a system stems from the requirement to create a low-cost, self-powered microfluidic pumping system that can sustain a continuous flow over an extended period of time. The diatom biosilica acts not only as the driving force behind the flow, but also serves as ultra-sensitive SERS substrates that allows for trace detection of various molecules. Liquid is drawn from a reservoir to the tip of a 150μm inner diameter capillary tube positioned directly over the diatom film. A thin and long horizontal reservoir is used to prevent flooding on the diatom film when the liquid is initially drawn to the diatom film through a capillary tube from the reservoir. The connection of the meniscus from the capillary to the film was maintained from a horizontal reservoir for a recorded time of 20 hours and 32 minutes before the partially filled reservoir emptied. Flow rates of 0.38, 0.22 and 0.16µL/min were achieved for square biosilica thin films of 49mm2, 25mm2, and 9mm2 at a temperature of 63̊F and 45% relative humidity respectively. A temperature-controlled system was introduced for the 49mm2 substrate and flow rates of 0.60, 0.82, 0.93, and 1.15µL/min were observed at 72, 77, 86, and 95̊F at 21% relative humidity respectively. More testing and analysis will be performed to test the operation limits of the proposed self-powered microfluidic system.
more »
« less
Biological Photonic Crystal‐Enhanced Plasmonic Mesocapsules: Approaching Single‐Molecule Optofluidic‐SERS Sensing
Abstract Surface‐enhanced Raman scattering (SERS) sensing in microfluidic devices, namely optofluidic‐SERS, suffers an intrinsic tradeoff between mass transport and hot spot density, both of which are required for ultrasensitive detection. To overcome this compromise, photonic crystal‐enhanced plasmonic mesocapsules are synthesized, utilizing diatom biosilica decorated with in‐situ growth silver nanoparticles (Ag NPs). In the optofluidic‐SERS testing of this study, 100× higher enhancement factors and more than 1,000× better detection limit are achieved compared with traditional colloidal Ag NPs, the improvement of which is attributed to unique properties of the mesocapsules. First, the porous diatom biosilica frustules serve as carrier capsules for high density Ag NPs that form high density plasmonic hot‐spots. Second, the submicron‐pores embedded in the frustule walls not only create a large surface‐to‐volume ratio allowing for effective analyte capture, but also enhance the local optical field through the photonic crystal effect. Last, the mesocapsules provide effective mixing with analytes as they are flowing inside the microfluidic channel. The reported mesocapsules achieve single molecule detection of Rhodamine 6G in microfluidic devices and are further utilized to detect 1 × 10−9mof benzene and chlorobenzene compounds in tap water with near real‐time response, which successfully overcomes the constraint of traditional optofluidic sensing.
more »
« less
- Award ID(s):
- 1701329
- PAR ID:
- 10460536
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Optical Materials
- Volume:
- 7
- Issue:
- 13
- ISSN:
- 2195-1071
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Surface-enhanced Raman scattering (SERS) spectroscopy is an ultra-sensitive analytical method with the powerful signal-molecule detection capability. Coupling with the polydimethylsiloxane (PDMS) material, SERS can be enabled on a polymeric substrate for fast-developing bio-compatible sensing applications. However, due to PDMS’s high viscosity, conventional PDMS-SERS substrates are typically thick and stiff, limiting their freedom for engineering flexible micro/nano functioning devices. To address this issue, we propose to adopt a low viscosity decamethylcyclopentasiloxane (D5) solvent as a diluent solution. Via controlling the mixture ratio of D5 and PDMS and the spin-coating speed for deposition, this method resulted in a film of a well-defined thickness from sub-millimeter down to a 100 nm scale. Furthermore, thanks to the unsaturated Si-H chemical bonds in the PDMS curing agent, the PDMS film could effectively reduce the Ag+ ions to Ag nanoparticles (NPs) directly bonding onto the substrate surface uniformly. Via adjusting the size and density of the AgNPs through reaction temperature and time, strong SERS was achieved and verified using R6G with the detection limit down to 0.1 ppm, attributed to the AgNPs’ plasmonic enhancement effect.more » « less
-
Abstract Two‐dimensional transition metal dichalcogenides (TMDs)/graphene van der Waals (vdW) heterostructures integrate the superior light–solid interaction in TMDs and charge mobility in graphene, and therefore are promising for surface‐enhanced Raman spectroscopy (SERS). Herein, a novel TMD (MoS2and WS2) nanodome/graphene vdW heterostructure SERS substrate, on which an extraordinary SERS sensitivity is achieved, is reported. Using fluorescent Rhodamine 6G (R6G) as probe molecules, the SERS sensitivity is in the range of 10−11to 10−12mon the TMD nanodomes/graphene vdW heterostructure substrates using 532 nm Raman excitation, which is comparable to the best sensitivity reported so far using plasmonic metal nanostructures/graphene SERS substrates, and is more than three orders of magnitude higher than that on single‐layer TMD and graphene substrates. Density functional theory simulation reveals enhanced electric dipole moments and dipole–dipole interaction at the TMD/graphene vdW interface, yielding an effective means to facilitate an external electrostatic perturbation on the graphene surface and charge transfer. This not only promotes chemical enhancement on SERS, but also enables electromagnetic enhancement of SERS through the excitation of localized surface plasmonic resonance on the TMD nanodomes. This TMD nanodome/graphene vdW heterostructure is therefore promising for commercial applications in high‐performance optoelectronics and sensing.more » « less
-
Silicon nanotubes (Si NTs) have a unique structure among the silicon nanostructure family, which is useful for diverse applications ranging from therapeutics to lithium storage/recycling. Their well-defined structure and high surface area make them ideal for sensing applications. In this work, we demonstrate the formation of Au nanoparticles (NPs) functionalized with 4-Mercaptophenylboronic acid (MPBA) on porous Si NTs (pSi NTs) fabricated using ZnO nanowires as a template. The system was characterized, and the proposed structure was confirmed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Varying glucose concentrations in phosphate-buffered saline (PBS) (0.5–80 mM) were introduced to the Si NT nanocomposite system. The glucose is detectable at low concentrations utilizing surface-enhanced Raman spectroscopy (SERS), which shows a concentration-dependent peak shift in the benzene ring breathing mode (~1071 cm−1) of MPBA. Complementing these measurements are simulations of the Raman hot spots associated with plasmonic enhancement of the Au NPs using COMSOL. This biocompatible system is envisioned to have applications in nanomedicine and microfluidic devices for real-time, non-invasive glucose sensing.more » « less
-
Placing plasmonic nanoparticles (NPs) in close proximity to semiconductor nanostructures renders effective tuning of the optoelectronic properties of semiconductors through the localized surface plasmon resonance (LSPR)-induced enhancement of light absorption and/or promotion of carrier transport. Herein, we report on, for the first time, the scrutiny of carrier dynamics of perovskite solar cells (PSCs) via sandwiching monodisperse plasmonic/dielectric core/shell NPs with systematically varied dielectric shell thickness yet fixed plasmonic core diameter within an electron transport layer (ETL). Specifically, a set of Au NPs with precisely controlled dimensions ( i.e. , fixed Au core diameter and tunable SiO 2 shell thickness) and architectures (plain Au NPs and plasmonic/dielectric Au/SiO 2 core/shell NPs) are first crafted by capitalizing on the star-like block copolymer nanoreactor strategy. Subsequently, these monodisperse NPs are sandwiched between the two consecutive TiO 2 ETLs. Intriguingly, there exists a critical dielectric SiO 2 shell thickness, below which hot electrons from the Au core are readily injected to TiO 2 ( i.e. , hot electron transfer (HET)); this promotes local electron mobility in the TiO 2 ETL, leading to improved charge transport and increased short-circuit current density ( J sc ). It is also notable that the HET effect moves up the Fermi level of TiO 2 , resulting in an enhanced built-in potential and open-circuit voltage ( V oc ). Taken together, the PSCs constructed by employing a sandwich-like TiO 2 /Au NPs/TiO 2 ETL exhibit both greatly enhanced J sc and V oc , delivering champion PCEs of 18.81% and 19.42% in planar and mesostructured PSCs, respectively. As such, the judicious positioning of rationally designed monodisperse plasmonic NPs in the ETL affords effective tailoring of carrier dynamics, thereby providing a unique platform for developing high-performance PSCs.more » « less
An official website of the United States government
