skip to main content


Title: Effects of contemporary agricultural land cover on Colorado potato beetle genetic differentiation in the Columbia Basin and Central Sands
Abstract

Landscape structure, which can be manipulated in agricultural landscapes through crop rotation and modification of field edge habitats, can have important effects on connectivity among local populations of insects. Though crop rotation is known to influence the abundance of Colorado potato beetle (CPB;Leptinotarsa decemlineataSay) in potato (Solanum tuberosumL.) fields each year, whether crop rotation and intervening edge habitat also affect genetic variation among populations is unknown. We investigated the role of landscape configuration and composition in shaping patterns of genetic variation in CPB populations in the Columbia Basin of Oregon and Washington, and the Central Sands of Wisconsin, USA. We compared landscape structure and its potential suitability for dispersal, tested for effects of specific land cover types on genetic differentiation among CPB populations, and examined the relationship between crop rotation distances and genetic diversity. We found higher genetic differentiation between populations separated by low potato land cover, and lower genetic diversity in populations occupying areas with greater crop rotation distances. Importantly, these relationships were only observed in the Columbia Basin, and no other land cover types influenced CPB genetic variation. The lack of signal in Wisconsin may arise as a consequence of greater effective population size and less pronounced genetic drift. Our results suggest that the degree to which host plant land cover connectivity affects CPB genetic variation depends on population size and that power to detect landscape effects on genetic differentiation might be reduced in agricultural insect pest systems.

 
more » « less
NSF-PAR ID:
10460604
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
9
Issue:
16
ISSN:
2045-7758
Page Range / eLocation ID:
p. 9385-9394
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Changing landscape heterogeneity can influence connectivity and alter genetic variation in local populations, but there can be a lag between ecological change and evolutionary responses. Temporal lag effects might be acute in agroecosystems, where land cover has changed substantially in the last two centuries. Here, we evaluate how patterns of an insect pest’s genetic differentiation are related to past and present agricultural land cover change over a 150‐year period. We quantified change in the amount of potato,Solanum tuberosumL., land cover since 1850 using county‐level agricultural census reports, obtained allele frequency data from 7,408 single‐nucleotide polymorphism loci, and compared effects of historic and contemporary landscape connectivity on genetic differentiation of Colorado potato beetle,Leptinotarsa decemlineataSay, in two agricultural landscapes in the United States. We found that potato land cover peaked in Wisconsin in the early 1900s, followed by rapid decline and spatial concentration, whereas it increased in amount and extent in the Columbia Basin of Oregon and Washington beginning in the 1960s. In both landscapes, we found small effect sizes of landscape resistance on genetic differentiation, but a 20× to 1,000× larger effect of contemporary relative to historic landscape resistances. Demographic analyses suggest population size trajectories were largely consistent among regions and therefore are not likely to have differentially impacted the observed patterns of population structure in each region. Weak landscape genetic associations might instead be related to the coarse resolution of our historical land cover data. Despite rapid changes in agricultural landscapes over the last two centuries, genetic differentiation amongL. decemlineatapopulations appears to reflect ongoing landscape change. The historical landscape genetic framework employed in this study is broadly applicable to other agricultural pests and might reveal general responses of pests to agricultural land‐use change.

     
    more » « less
  2. Abstract

    Despite extensive research on agricultural pests, our knowledge about their evolutionary history is often limited. A mechanistic understanding of the demographic changes and modes of adaptation remains an important goal, as it improves our understanding of organismal responses to environmental change and our ability to sustainably manage pest populations. Emerging genomic datasets now allow for characterization of demographic and adaptive processes, but face limits when they are drawn from contemporary samples, especially in the context of strong demographic change, repeated selection, or adaptation involving modest shifts in allele frequency at many loci. Temporal sampling, however, can improve our ability to reconstruct evolutionary events. Here, we leverage museum samples to examine whether population genomic diversity and structure has changed over time, and to identify genomic regions that appear to be under selection. We focus on the Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say 1824; Coleoptera: Chrysomelidae), which is widely regarded as a super-pest due to its rapid, and repeated, evolution to insecticides. By combining whole genome resequencing data from 78 museum samples with modern sampling, we demonstrate that CPB expanded rapidly in the 19th century, leading to a reduction in diversity and limited genetic structure from the Midwest to Northeast United States. Temporal genome scans provide extensive evidence for selection acting in resistant field populations in Wisconsin and New York, including numerous known insecticide resistance genes. We also validate these results by showing that known selective sweeps in modern populations are identified by our genome scan. Perhaps most importantly, temporal analysis indicates selection on standing genetic variation, as we find evidence for parallel evolution in the two geographical regions. Parallel evolution involves a range of phenotypic traits not previously identified as under selection in CPB, such as reproductive and morphological functional pathways that might be important for adaptation to agricultural habitats.

     
    more » « less
  3. Abstract

    Understanding how environmental variation influences population genetic structure is important for conservation management because it can reveal how human stressors influence population connectivity, genetic diversity and persistence. We used riverscape genetics modelling to assess whether climatic and habitat variables were related to neutral and adaptive patterns of genetic differentiation (population‐specific and pairwiseFST) within five metapopulations (79 populations, 4583 individuals) of steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin,USA. Using 151 putatively neutral and 29 candidate adaptiveSNPloci, we found that climate‐related variables (winter precipitation, summer maximum temperature, winter highest 5% flow events and summer mean flow) best explained neutral and adaptive patterns of genetic differentiation within metapopulations, suggesting that climatic variation likely influences both demography (neutral variation) and local adaptation (adaptive variation). However, we did not observe consistent relationships between climate variables andFSTacross all metapopulations, underscoring the need for replication when extrapolating results from one scale to another (e.g. basin‐wide to the metapopulation scale). Sensitivity analysis (leave‐one‐population‐out) revealed consistent relationships between climate variables andFSTwithinthree metapopulations; however, these patterns were not consistent in two metapopulations likely due to small sample sizes (= 10). These results provide correlative evidence that climatic variation has shaped the genetic structure of steelhead populations and highlight the need for replication and sensitivity analyses in land and riverscape genetics.

     
    more » « less
  4. Abstract

    Landscape features often shape patterns of gene flow and genetic differentiation in plant species. Populations that are small and isolated enough also become subject to genetic drift. We examined patterns of gene flow and differentiation among 12 floodplain populations of the selfing annual jewelweed (Impatiens capensisMeerb.) nested within four river systems and two major watersheds in Wisconsin, USA. Floodplain forests and marshes provide a model system for assessing the effects of habitat fragmentation within agricultural/urban landscapes and for testing whether rivers act to genetically connect dispersed populations. We generated a panel of 12,856 single nucleotide polymorphisms and assessed genetic diversity, differentiation, gene flow, and drift. Clustering methods revealed strong population genetic structure with limited admixture and highly differentiated populations (mean multilocusFST = 0.32,FST’ = 0.33). No signals of isolation by geographic distance or environment emerged, but alleles may flow along rivers given that genetic differentiation increased with river distance. Differentiation also increased in populations with fewer private alleles (R2 = 0.51) and higher local inbreeding (R2 = 0.22). Populations varied greatly in levels of local inbreeding (FIS = 0.2–0.9) andFISincreased in more isolated populations. These results suggest that genetic drift dominates other forces in structuring theseImpatienspopulations. In rapidly changing environments, species must migrate or genetically adapt. Habitat fragmentation limits both processes, potentially compromising the ability of species to persist in fragmented landscapes.

     
    more » « less
  5. Abstract

    Urbanization can influence local richness (alpha diversity) and community composition (beta diversity) in numerous ways. For instance, reduced connectivity and land cover change may lead to the loss of native specialist taxa, decreasing alpha diversity. Alternatively, if urbanization facilitates nonnative species introductions and generalist taxa, alpha diversity may remain unchanged or increase, while beta diversity could decline due to the homogenization of community structure. Wetlands and ponds provide critical ecosystem services and support diverse communities, making them important systems in which to understand the consequences of urbanization. To determine how urban development shapes pond community structure, we surveyed 68 ponds around Madison, Wisconsin, USA, which were classified as urban, greenspace, or rural based on surrounding land use. We evaluated how landscape and local pond factors were correlated with the alpha diversity of aquatic plants, macroinvertebrates, and aquatic vertebrates. We also analyzed whether surrounding land use was associated with changes in community composition and the presence of specific taxa. We found a 23% decrease in mean richness (alpha diversity) from rural to urban pond sites and a 15% decrease from rural to greenspace pond sites. Among landscape factors, adjacent developed land, mowed lawn cover, and greater distances to other waterbodies were negatively correlated with observed pond richness. Among pond level factors, habitat complexity was associated with increased richness, while nonnative fishes were associated with decreased richness. Beta diversity was relatively high for all ponds due to turnover in composition between sites. Urban ponds supported more nonnative species, lacked a subset of native species found in rural ponds, and had slightly higher beta diversity than greenspace and rural ponds. Our results suggest that integrating ponds into connected greenspaces, maintaining riparian vegetation, preventing nonnative fish introductions, and promoting habitat complexity may mitigate the negative effects of urbanization on aquatic richness. While ponds are small in size and rarely incorporated into urban conservation planning, the high beta diversity of distinct pond communities emphasizes their importance for supporting urban biodiversity.

     
    more » « less