Abstract This study of the first continuous multiyear observations of the East Reykjanes Ridge Current (ERRC) reveals a highly variable, mostly barotropic southwestward flow with a mean transport of 10–13 Sv. The ERRC effectively acts as a western boundary current in the Iceland Basin on the eastern flank of the Reykjanes Ridge. As part of the Overturning in the Subpolar North Atlantic Program (OSNAP), continuous measurements of the ERRC have been maintained for the first time using acoustic Doppler current profilers, current meters, and dynamic height moorings at six mooring sites near 58°N since 2014. Together with satellite altimetry and Argo profile and drift data, the mean transport, synoptic variability, water mass properties, and upstream and downstream pathways of the ERRC are examined. Results show that the ERRC forms in the northeastern Iceland Basin at the convergence of surface waters from the North Atlantic Current and deeper Icelandic Slope Water formed along the Iceland‐Faroe Ridge. The ERRC becomes denser as it cools and freshens along the northern and western topography of the Basin before retroflecting over the Reykjanes Ridge near 59°N into the Irminger Current. Analysis of the flow‐weighted density changes along the ERRC's path reveals that it is responsible for about one third of the net potential density change of waters circulating around the rim of the subpolar gyre.
more »
« less
Interior Pathways of Labrador Sea Water in the North Atlantic From the Argo Perspective
Abstract The pathways and transports of Labrador Sea Water (LSW) within the southward‐flowing lower limb of the Atlantic Meridional Overturning Circulation are studied using 12 years of Argo profiles and subsurface Argo drift data. Consistent with previous studies, the results show clear evidence for interior pathways of LSW that separate from the western boundary near the Grand Banks and flow eastward and then southward around a large‐scale deep anticyclonic gyre in the northern subtropical Atlantic. Most of the LSW exported into the interior recirculates in the Newfoundland Basin (9.3 ± 3.5 Sv). However, approximately 3.2 ± 0.4 Sv cross the Mid‐Atlantic Ridge and flow southward east of the Azores. This branch feeds a westward quasi‐zonal pathway that recrosses the Ridge and returns to the western boundary around 30°N.
more »
« less
- Award ID(s):
- 1332978
- PAR ID:
- 10460716
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 46
- Issue:
- 6
- ISSN:
- 0094-8276
- Page Range / eLocation ID:
- p. 3340-3348
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Iceland-Scotland Overflow Water (ISOW) is a primary deep water mass exported from the Norwegian Sea into the North Atlantic as part of the global Meridional Overturning Circulation. ISOW has historically been depicted as flowing counter-clockwise in a deep boundary current around the subpolar North Atlantic, but this single-boundary-following pathway is being challenged by new Lagrangian observations and model simulations. We show here that ISOW leaves the boundary and spreads into the interior towards the central Labrador and Irminger basins after flowing through the Charlie-Gibbs Fracture Zone. We also describe a newly observed southward pathway of ISOW along the western flank of the Mid-Atlantic Ridge. The partitioning of these pathways is shown to be influenced by deep-reaching eddies and meanders of the North Atlantic Current. Our results, in tandem with previous studies, call for a revision in the historical depiction of ISOW pathways throughout the North Atlantic.more » « less
-
Iceland-Scotland Overflow Water (ISOW) is a primary deep water mass exported from the Norwegian Sea into the North Atlantic as part of the global Meridional Overturning Circulation. ISOW has historically been depicted as flowing counter-clockwise in a deep boundary current around the subpolar North Atlantic, but this single-boundary-following pathway is being challenged by new Lagrangian observations and model simulations. We show here that ISOW leaves the boundary and spreads into the interior towards the central Labrador and Irminger basins after flowing through the Charlie-Gibbs Fracture Zone. We also describe a newly observed southward pathway of ISOW along the western flank of the Mid-Atlantic Ridge. The partitioning of these pathways is shown to be influenced by deep-reaching eddies and meanders of the North Atlantic Current. Our results, in tandem with previous studies, call for a revision in the historical depiction of ISOW pathways throughout the North Atlantic.more » « less
-
In 1982, Talley and McCartney used the low potential vorticity signature of Labrador Sea Water (LSW) to make the first North Atlantic maps of its properties. Forty years later, our understanding of LSW variability, spreading time scales and importance has deepened. In this review and synthesis article, I showcase recent observational advances in our understanding of how LSW spreads from its formation regions into the Deep Western Boundary Current and southward into the subtropical North Atlantic. I reconcile the fact that decadal variability in LSW formation is reflected in the Deep Western Boundary Current with the fact that LSW formation does not control subpolar overturning strength and discuss hypothesized connections between LSW spreading and decadal Atlantic Meridional Overturning Circulation variability. Ultimately, LSW spreading is of fundamental interest because it is a significant pathway for dissolved gasses such as oxygen and carbon dioxide into the deep ocean. We should hence prioritize adding dissolved gas measurements to standard hydrographic and circulation observations, particularly at targeted western boundary locations.This article is part of a discussion meeting issue ‘Atlantic overturning: new observations and challenges’.more » « less
-
null (Ed.)Abstract The mean North Atlantic Deep Water (NADW, 1000 < z < 5000 m) circulation and deep western boundary current (DWBC) variability offshore of Abaco, Bahamas, at 26.5°N are investigated from nearly two decades of velocity and hydrographic observations, and outputs from a 30-yr-long eddy-resolving global simulation. Observations at 26.5°N and Argo-derived geostrophic velocities show the presence of a mean Abaco Gyre spanning the NADW layer, consisting of a closed cyclonic circulation between approximately 24° and 30°N and 72° and 77°W. The southward-flowing portion of this gyre (the DWBC) is constrained to within ~150 km of the western boundary with a mean transport of ~30 Sv (1 Sv ≡ 10 6 m 3 s −1 ). Offshore of the DWBC, the data show a consistent northward recirculation with net transports varying from 6.5 to 16 Sv. Current meter records spanning 2008–17 supported by the numerical simulation indicate that the DWBC transport variability is dominated by two distinct types of fluctuations: 1) periods of 250–280 days that occur regularly throughout the time series and 2) energetic oscillations with periods between 400 and 700 days that occur sporadically every 5–6 years and force the DWBC to meander far offshore for several months. The shorter-period variations are related to DWBC meandering caused by eddies propagating southward along the continental slope at 24°–30°N, while the longer-period oscillations appear to be related to large anticyclonic eddies that slowly propagate northwestward counter to the DWBC flow between ~20° and 26.5°N. Observational and theoretical evidence suggest that these two types of variability might be generated, respectively, by DWBC instability processes and Rossby waves reflecting from the western boundary.more » « less
An official website of the United States government
