Diagnostic approaches that combine the high sensitivity and specificity of laboratory-based digital detection with the ease of use and affordability of point-of-care (POC) technologies could revolutionize disease diagnostics. This is especially true in infectious disease diagnostics, where rapid and accurate pathogen detection is critical to curbing the spread of disease. We have pioneered an innovative label-free digital detection platform that utilizes Interferometric Reflectance Imaging Sensor (IRIS) technology. IRIS leverages light interference from an optically transparent thin film, eliminating the need for complex optical resonances to enhance the signal by harnessing light interference and the power of signal averaging in shot-noise-limited operation In our latest work, we have further improved our previous 'Single-Particle' IRIS (SP-IRIS) technology by allowing the construction of the optical signature of target nanoparticles (whole virus) from a single image. This new platform, 'Pixel-Diversity' IRIS (PD-IRIS), eliminated the need for z-scan acquisition, required in SP-IRIS, a time-consuming and expensive process, and made our technology more applicable to POC settings. Using PD-IRIS, we quantitatively detected the Monkeypox virus (MPXV), the etiological agent for Monkeypox (Mpox) infection. MPXV was captured by anti-A29 monoclonal antibody (mAb 69-126-3) on Protein G spots on the sensor chips and were detected at a limit-of-detection (LOD) - of 200 PFU/mL (∼3.3 aM). PD-IRIS was superior to the laboratory-based ELISA (LOD - 1800 PFU/mL) used as a comparator. The specificity of PD-IRIS in MPXV detection was demonstrated using Herpes simplex virus, type 1 (HSV-1), and Cowpox virus (CPXV). This work establishes the effectiveness of PD-IRIS and opens possibilities for its advancement in clinical diagnostics of Mpox at POC. Moreover, PD-IRIS is a modular technology that can be adapted for the multiplex detection of pathogens for which high-affinity ligands are available that can bind their surface antigens to capture them on the sensor surface. 
                        more » 
                        « less   
                    
                            
                            Ultrasensitive Ebola Virus Antigen Sensing via 3D Nanoantenna Arrays
                        
                    
    
            Abstract Sensitive detection of pathogens is crucial for early disease diagnosis and quarantine, which is of tremendous need in controlling severe and fatal illness epidemics such as of Ebola virus (EBOV) disease. Serology assays can detect EBOV‐specific antigens and antibodies cost‐effectively without sophisticated equipment; however, they are less sensitive than reverse transcriptase polymerase chain reaction (RT‐PCR) tests. Herein, a 3D plasmonic nanoantenna assay sensor is developed as an on‐chip immunoassay platform for ultrasensitive detection of Ebola virus (EBOV) antigens. The EBOV sensor exhibits substantial fluorescence intensity enhancement in immunoassays compared to flat gold substrate. The nanoantenna‐based biosensor successfully detects EBOV soluble glycoprotein (sGP) in human plasma down to 220 fg mL−1, a significant 240 000‐fold sensitivity improvement compared to the 53 ng mL−1EBOV antigen detection limit of the existing rapid EBOV immunoassay. In a mock clinical trial, the sensor detects sGP‐spiked human plasma samples at two times the limit of detection with 95.8% sensitivity. The results combined highlight the nanosensor's extraordinary capability of detecting EBOV antigen at ultralow concentration compared to existing immunoassay methods. It is a promising next‐generation bioassay platform for early‐stage disease diagnosis and pathogen detection for both public health and national security applications. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1635443
- PAR ID:
- 10460725
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 31
- Issue:
- 30
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Precise monitoring of specific biomarkers in biological fluids with accurate biodiagnostic sensors is critical for early diagnosis of diseases and subsequent treatment planning. In this work, we demonstrated an innovative biodiagnostic sensor, portable reusable accurate diagnostics with nanostar antennas (PRADA), for multiplexed biomarker detection in small volumes (~50 μl) enabled in a microfluidic platform. Here, PRADA simultaneously detected two biomarkers of myocardial infarction, cardiac troponin I (cTnI), which is well accepted for cardiac disorders, and neuropeptide Y (NPY), which controls cardiac sympathetic drive. In PRADA immunoassay, magnetic beads captured the biomarkers in human serum samples, and gold nanostars (GNSs) “antennas” labeled with peptide biorecognition elements and Raman tags detected the biomarkers via surface‐enhanced Raman spectroscopy (SERS). The peptide‐conjugated GNS‐SERS barcodes were leveraged to achieve high sensitivity, with a limit of detection (LOD) of 0.0055 ng/ml of cTnI, and a LOD of 0.12 ng/ml of NPY comparable with commercially available test kits. The innovation of PRADA was also in the regeneration and reuse of the same sensor chip for ~14 cycles. We validated PRADA by testing cTnI in 11 de‐identified cardiac patient samples of various demographics within a 95% confidence interval and high precision profile. We envision low‐cost PRADA will have tremendous translational impact and be amenable to resource‐limited settings for accurate treatment planning in patients.more » « less
- 
            Abstract Although increasing efforts have been devoted to the development of non‐invasive wearable electrochemical sweat sensors for monitoring physiological and metabolic information, most of them still suffer from poor stability and specificity over time and fluctuating temperatures. This study reports the design and fabrication of a long‐term stable and highly sensitive flexible electrochemical sensor based on nanocomposite‐modified porous graphene by facile laser treatment for detecting biomarkers such as glucose in sweat. The laser‐reduced and patterned stable conductive nanocomposite on the porous graphene electrode provides the resulting glucose sensor with an excellent sensitivity of 1317.69 µA mm−1cm−2and an ultra‐low limit of detection of 0.079 µm. The sensor can also detect pH and exhibit extraordinary stability to maintain more than 91% sensitivity over 21 days in ambient conditions. Taken together with a temperature sensor based on the same material system, the dual glucose and pH sensor integrated with a flexible microfluidic sweat sampling network further results in accurate continuous on‐body glucose detection calibrated by the simultaneously measured pH and temperature. The low‐cost, highly sensitive, and long‐term stable platform could facilitate the early identification and continuous monitoring of different biomarkers for non‐invasive disease diagnosis and treatment evaluation.more » « less
- 
            Abstract Assays utilizing fluorophores are common throughout life science research and diagnostics, although detection limits are generally limited by weak emission intensity, thus requiring many labeled target molecules to combine their output to achieve higher signal‐to‐noise. We describe how the synergistic coupling of plasmonic and photonic modes can significantly boost the emission from fluorophores. By optimally matching the resonant modes of a plasmonic fluor (PF) nanoparticle and a photonic crystal (PC) with the absorption and emission spectrum of the fluorescent dye, a 52‐fold improvement in signal intensity is observed, enabling individual PFs to be observed and digitally counted, where one PF tag represents one detected target molecule. The amplification can be attributed to the strong near‐field enhancement due to the cavity‐induced activation of the PF, PC band structure‐mediated improvement in collection efficiency, and increased rate of spontaneous emission. The applicability of the method by dose‐response characterization of a sandwich immunoassay for human interleukin‐6, a biomarker used to assist diagnosis of cancer, inflammation, sepsis, and autoimmune disease is demonstrated. A limit of detection of 10 fg mL−1and 100 fg mL−1in buffer and human plasma respectively, is achieved, representing a capability nearly three orders of magnitude lower than standard immunoassays.more » « less
- 
            Rapid and ultrasensitive point-of-care RNA detection plays a critical role in the diagnosis and management of various infectious diseases. The gold-standard detection method of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is ultrasensitive and accurate yet limited by the lengthy turnaround time (1-2 days). On the other hand, antigen test offers rapid at-home detection (15-20 min) but suffers from low sensitivity and high false-negative rates. An ideal point-of-care diagnostic device would combine the merits of PCR-level sensitivity and rapid sample-to-result workflow comparable to antigen testing. However, the existing RNA detection platform typically possesses superior sensitivity or rapid sample-to-result time, but not both. This paper reports a point-of-care microfluidic device that offers ultrasensitive yet rapid detection of viral RNA from clinical samples. The device consists of a microfluidic chip for precisely manipulating small volumes of samples, a miniaturized heater for viral lysis and ribonuclease (RNase) inactivation, a CRISPR Cas13a- electrochemical sensor for target preamplification-free and ultrasensitive RNA detection, and a smartphone-compatible potentiostat for data acquisition. As demonstrations, the devices achieve the detection of heat-inactivated SARS-CoV-2 samples with a limit of detection (LOD) down to 10 aM within 25 minutes, which is comparable to the sensitivity of RT-PCR and rapidness of antigen test. The platform also successfully distinguishes all nine positive unprocessed clinical SARS-CoV-2 nasopharyngeal swab samples from four negative samples within 25 minutes of sample-to-result time. Together, this device provides a point-of-care solution that can be deployed in diverse settings beyond laboratory environments for rapid and accurate detection of RNA from clinical samples. The device can potentially be expandable to detect other viral targets, such as human immunodeficiency virus (HIV) self-testing and Zika virus, where rapid and ultrasensitive point-of-care detection is required.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
