skip to main content


Title: High‐Throughput Growth of Microscale Gold Bicrystals for Single‐Grain‐Boundary Studies
Abstract

The study of grain boundaries is the foundation to understanding many of the intrinsic physical properties of bulk metals. Here, the preparation of microscale thin‐film gold bicrystals, using rapid melt growth, is presented as a model system for studies of single grain boundaries. This material platform utilizes standard fabrication tools and supports the high‐yield growth of thousands of bicrystals per wafer, each containing a grain boundary with a unique <111> tilt character. The crystal growth dynamics of the gold grains in each bicrystal are mediated by platinum gradients, which originate from the gold–platinum seeds responsible for gold crystal nucleation. This crystallization mechanism leads to a decoupling between crystal nucleation and crystal growth, and it ensures that the grain boundaries form at the middle of the gold microstructures and possess a uniform distribution of misorientation angles. It is envisioned that these bicrystals will enable the systematic study of the electrical, optical, chemical, thermal, and mechanical properties of individual grain boundary types.

 
more » « less
Award ID(s):
1804224
NSF-PAR ID:
10460726
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
31
Issue:
32
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Typical models of polycrystalline ionic materials treat the grain boundary properties as single valued, without consideration of the full range of values that define the macroscopically measured average. Here a unique experimental platform suitable for local multimodal characterization of individual grain boundaries in bicrystal fibers is reported. A variation of three orders of magnitude in the grain boundary conductivity of ceria is observed, as measured across six individual bicrystals by both alternating current impedance spectroscopy and direct current (D.C.) linear sweep voltammetry. Nonlinear behavior of the D.C. measurements is consistent with resistance due to a space charge effect. Time‐of‐flight secondary ion beam spectroscopy reveals a correlation between grain boundary resistance and the concentration of impurities Si, Al, and Ca segregated at the grain boundaries, although the bulk concentrations of these impurities are negligible. Electron backscatter diffraction analysis of the crystal orientations suggests a correlation between the misorientation across the grain boundaries and grain boundary resistance. These correlations point towards a grain boundary resistance that arises from impurity‐generated space charge effects and variations in impurity concentration and hence resistivity driven by the energetics of impurity segregation to grain boundaries of differing surface energies.

     
    more » « less
  2. Abstract

    To study discontinuous precipitation, which is an important method for strengthening materials, we observed the nucleation and growth of discontinuous precipitates in Cu–Ag alloys using electron backscatter diffraction and scanning transmission electron microscopy. We found that discontinuous precipitation always started with Ag precipitates, which nucleated on Cu grain boundaries. These precipitates then each took the shape of a large, abutted cone that shared a semi-coherent interface with one of the Cu grains, topped by a small spherical cap that shared an incoherent interface with the Cu grain on the opposite side of the boundary. This formation created a difference between the levels of interface energy on each side of boundary. We assume that this difference and boundary curvature together generates the driving force necessary to push grain boundary migration, thus triggering discontinuous precipitation. Because of grain boundary migration, Ag solute was consumed at one side of the grain, which causes a solute difference. The difference produces mainly driving force, pushing the boundaries to migrate forward.

     
    more » « less
  3. Grain boundaries in polycrystalline materials migrate to reduce the total excess energy. It has recently been found that the factors governing migration rates of boundaries in bicrystals are insufficient to explain boundary migration in polycrystals. We first review our current understanding of the atomistic mechanisms of grain boundary migration based on simulations and high-resolution transmission electron microscopy observations. We then review our current understanding at the continuum scale based on simulations and observations using high-energy diffraction microscopy. We conclude that detailed comparisons of experimental observations with atomistic simulations of migration in polycrystals (rather than bicrystals) are required to better understand the mechanisms of grain boundary migration, that the driving force for grain boundary migration in polycrystals must include factors other than curvature, and that current simulations of grain growth are insufficient for reproducing experimental observations, possibly because of an inadequate representation of the driving force.

     
    more » « less
  4. Abstract

    Understanding interactions between externally applied electric fields and the interfacial structures of nanoscale ceramics is important for controlling their functional properties. In ceramic oxides, functional properties are determined by oxygen vacancy concentrations near and within grain‐boundary core structures. In this study it is shown that the application of electrostatic fields ranging from 0 to nominally 170 V/cm during diffusion bonding of bicrystals alters the atomic and electronic core structures of (100) twist grain boundaries in SrTiO3. The applied electric field strength affects local oxygen vacancy concentrations and ordering of the oxygen sublattice. Results for this model system indicate that electrostatic fields applied during ceramic manufacturing can be employed as a new processing parameter to tailor defect structure configurations and obtain unprecedented ceramic microstructures. The ability to manipulate interface configurations with electric fields in the absence of any sintering additives may have far reaching implications for tuning polarization and band structures in electroceramics while avoiding effects of often unwanted dopants.

     
    more » « less
  5. Abstract

    In polycrystalline materials, grain boundaries are known to be a critical microstructural component controlling material’s mechanical properties, and their characters such as misorientation and crystallographic boundary planes would also influence the dislocation dynamics. Nevertheless, many of generally used mechanistic models for deformation twin nucleation in fcc metal do not take considerable care of the role of grain boundary characters. Here, we experimentally reveal that deformation twin nucleation occurs at an annealing twin (Σ3{111}) boundary in a high-Mn austenitic steel when dislocation pile-up at Σ3{111} boundary produced a local stress exceeding the twining stress, while no obvious local stress concentration was required at relatively high-energy grain boundaries such as Σ21 or Σ31. A periodic contrast reversal associated with a sequential stacking faults emission from Σ3{111} boundary was observed by in-situ transmission electron microscopy (TEM) deformation experiments, proving the successive layer-by-layer stacking fault emission was the deformation twin nucleation mechanism, different from the previously reported observations in the high-Mn steels. Since this is also true for the observed high Σ-value boundaries in this study, our observation demonstrates the practical importance of taking grain boundary characters into account to understand the deformation twin nucleation mechanism besides well-known factors such as stacking fault energy and grain size.

     
    more » « less