skip to main content


Title: An information network flow approach for measuring functional connectivity and predicting behavior
Abstract Introduction

Connectome‐based predictive modeling (CPM) is a recently developed machine‐learning‐based framework to predict individual differences in behavior from functional brain connectivity (FC). In these models, FC was operationalized as Pearson's correlation between brain regions’ fMRI time courses. However, Pearson's correlation is limited since it only captures linear relationships. We developed a more generalized metric of FC based on information flow. This measure represents FC by abstracting the brain as a flow network of nodes that send bits of information to each other, where bits are quantified through an information theory statistic called transfer entropy.

Methods

With a sample of individuals performing a sustained attention task and resting during functional magnetic resonance imaging (fMRI) (n = 25), we use the CPM framework to build machine‐learning models that predict attention from FC patterns measured with information flow. Models trained on− 1 participants’ task‐based patterns were applied to an unseen individual's resting‐state pattern to predict task performance. For further validation, we applied our model to two independent datasets that included resting‐state fMRI data and a measure of attention (Attention Network Task performance [n = 41] and stop‐signal task performance [n = 72]).

Results

Our model significantly predicted individual differences in attention task performance across three different datasets.

Conclusions

Information flow may be a useful complement to Pearson's correlation as a measure of FC because of its advantages for nonlinear analysis and network structure characterization.

 
more » « less
NSF-PAR ID:
10460737
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Brain and Behavior
Volume:
9
Issue:
8
ISSN:
2162-3279
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background

    Cognitive training may partially reverse cognitive deficits in people with HIV (PWH). Previous functional MRI (fMRI) studies demonstrate that working memory training (WMT) alters brain activity during working memory tasks, but its effects on resting brain network organization remain unknown.

    Purpose

    To test whether WMT affects PWH brain functional connectivity in resting‐state fMRI (rsfMRI).

    Study Type

    Prospective.

    Population

    A total of 53 PWH (ages 50.7 ± 1.5 years, two women) and 53HIV‐seronegative controls (SN, ages 49.5 ± 1.6 years, six women).

    Field Strength/Sequence

    Axial single‐shot gradient‐echo echo‐planar imaging at 3.0 T was performed at baseline (TL1), at 1‐month (TL2), and at 6‐months (TL3), after WMT.

    Assessment

    All participants had rsfMRI and clinical assessments (including neuropsychological tests) at TL1 before randomization to Cogmed WMT (adaptive training,n = 58: 28 PWH, 30 SN; nonadaptive training,n = 48: 25 PWH, 23 SN), 25 sessions over 5–8 weeks. All assessments were repeated at TL2 and at TL3. The functional connectivity estimated by independent component analysis (ICA) or graph theory (GT) metrics (eigenvector centrality, etc.) for different link densities (LDs) were compared between PWH and SN groups at TL1 and TL2.

    Statistical Tests

    Two‐way analyses of variance (ANOVA) on GT metrics and two‐samplet‐tests on FC or GT metrics were performed. Cognitive (eg memory) measures were correlated with eigenvector centrality (eCent) using Pearson's correlations. The significance level was set atP < 0.05 after false discovery rate correction.

    Results

    The ventral default mode network (vDMN) eCent differed between PWH and SN groups at TL1 but not at TL2 (P = 0.28). In PWH, vDMN eCent changes significantly correlated with changes in the memory ability in PWH (r = −0.62 at LD = 50%) and vDMN eCent before training significantly correlated with memory performance changes (r = 0.53 at LD = 50%).

    Data Conclusion

    ICA and GT analyses showed that adaptive WMT normalized graph properties of the vDMN in PWH.

    Evidence Level

    1

    Technical Efficacy

    1

     
    more » « less
  2. Although we must prioritize the processing of task-relevant information to navigate life, our ability to do so fluctuates across time. Previous work has identified fMRI functional connectivity (FC) networks that predict an individual's ability to sustain attention and vary with attentional state from 1 min to the next. However, traditional dynamic FC approaches typically lack the temporal precision to capture moment-to-moment network fluctuations. Recently, researchers have “unfurled” traditional FC matrices in “edge cofluctuation time series” which measure timepoint-by-timepoint cofluctuations between regions. Here we apply event-based and parametric fMRI analyses to edge time series to capture moment-to-moment fluctuations in networks related to attention. In two independent fMRI datasets examining young adults of both sexes in which participants performed a sustained attention task, we identified a reliable set of edges that rapidly deflects in response to rare task events. Another set of edges varies with continuous fluctuations in attention and overlaps with a previously defined set of edges associated with individual differences in sustained attention. Demonstrating that edge-based analyses are not simply redundant with traditional regions-of-interest–based approaches, up to one-third of reliably deflected edges were not predicted from univariate activity patterns alone. These results reveal the large potential in combining traditional fMRI analyses with edge time series to identify rapid reconfigurations in networks across the brain.

     
    more » « less
  3. Abstract Introduction

    Working memory is a critical cognitive ability that affects our daily functioning and relates to many cognitive processes and clinical conditions. Episodic memory is vital because it enables individuals to form and maintain their self‐identities. Our study analyzes the extent to which whole‐brain functional connectivity observed during completion of anN‐back memory task, a common measure of working memory, can predict both working memory and episodic memory.

    Methods

    We used connectome‐based predictive models (CPMs) to predict 502 Human Connectome Project (HCP) participants' in‐scanner 2‐back memory test scores and out‐of‐scanner working memory test (List Sorting) and episodic memory test (Picture Sequence and Penn Word) scores based on functional magnetic resonance imaging (fMRI) data collected both during rest andN‐back task performance. We also analyzed the functional brain connections that contributed to prediction for each of these models.

    Results

    Functional connectivity observed duringN‐back task performance predicted out‐of‐scanner List Sorting scores and to a lesser extent out‐of‐scanner Picture Sequence scores, but did not predict out‐of‐scanner Penn Word scores. Additionally, the functional connections predicting 2‐back scores overlapped to a greater degree with those predicting List Sorting scores than with those predicting Picture Sequence or Penn Word scores. Functional connections with the insula, including connections between insular and parietal regions, predicted scores across the 2‐back, List Sorting, and Picture Sequence tasks.

    Conclusions

    Our findings validate functional connectivity observed during theN‐back task as a measure of working memory, which generalizes to predict episodic memory to a lesser extent. By building on our understanding of the predictive power ofN‐back task functional connectivity, this work enhances our knowledge of relationships between working memory and episodic memory.

     
    more » « less
  4. Abstract

    The increasing incidence of age‐related comorbidities in people with HIV (PWH) has led to accelerated aging theories. Functional neuroimaging research, including functional connectivity (FC) using resting‐state functional magnetic resonance imaging (rs‐fMRI), has identified neural aberrations related to HIV infection. Yet little is known about the relationship between aging and resting‐state FC in PWH. This study included 86 virally suppressed PWH and 99 demographically matched controls spanning 22–72 years old who underwent rs‐fMRI. The independent and interactive effects of HIV and aging on FC were investigated both within‐ and between‐network using a 7‐network atlas. The relationship between HIV‐related cognitive deficits and FC was also examined. We also conducted network‐based statistical analyses using a brain anatomical atlas (n = 512 regions) to ensure similar results across independent approaches. We found independent effects of age and HIV in between‐network FC. The age‐related increases in FC were widespread, while PWH displayed further increases above and beyond aging, particularly between‐network FC of the default‐mode and executive control networks. The results were overall similar using the regional approach. Since both HIV infection and aging are associated with independent increases in between‐network FC, HIV infection may be associated with a reorganization of the major brain networks and their functional interactions in a manner similar to aging.

     
    more » « less
  5. Abstract

    Dynamic functional network connectivity (dFNC) is an expansion of traditional, static FNC that measures connectivity variation among brain networks throughout scan duration. We used a large resting‐state fMRI (rs‐fMRI) sample from the PREDICT‐HD study (N = 183 Huntington disease gene mutation carriers [HDgmc] andN = 78 healthy control [HC] participants) to examine whole‐brain dFNC and its associations with CAG repeat length as well as the product of scaled CAG length and age, a variable representing disease burden. We also tested for relationships between functional connectivity and motor and cognitive measurements. Group independent component analysis was applied to rs‐fMRI data to obtain whole‐brain resting state networks. FNC was defined as the correlation between RSN time‐courses. Dynamic FNC behavior was captured using a sliding time window approach, and FNC results from each window were assigned to four clusters representing FNC states, using a k‐means clustering algorithm. HDgmc individuals spent significantly more time in State‐1 (the state with the weakest FNC pattern) compared to HC. However, overall HC individuals showed more FNC dynamism than HDgmc. Significant associations between FNC states and genetic and clinical variables were also identified. In FNC State‐4 (the one that most resembled static FNC), HDgmc exhibited significantly decreased connectivity between the putamen and medial prefrontal cortex compared to HC, and this was significantly associated with cognitive performance. In FNC State‐1, disease burden in HDgmc participants was significantly associated with connectivity between the postcentral gyrus and posterior cingulate cortex, as well as between the inferior occipital gyrus and posterior parietal cortex.

     
    more » « less