skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On a model-based approach to improve intranasal spray targeting for respiratory viral infections
The nasopharynx, at the back of the nose, constitutes the dominant initial viral infection trigger zone along the upper respiratory tract. However, as per the standard recommended usage protocol (“Current Use”, or CU) for intranasal sprays, the nozzle should enter the nose almost vertically, resulting in sub-optimal nasopharyngeal drug deposition. Through the Large Eddy Simulation technique, this study has replicated airflow under standard breathing conditions with 15 and 30 L/min inhalation rates, passing through medical scan-based anatomically accurate human airway cavities. The small-scale airflow fluctuations were resolved through use of a sub-grid scale Kinetic Energy Transport Model. Intranasally sprayed droplet trajectories for different spray axis placement and orientation conditions were subsequently tracked via Lagrangian-based inert discrete phase simulations against the ambient inhaled airflow field. Finally, this study verified the computational projections for the upper airway drug deposition trends against representative physical experiments on sprayed delivery performed in a 3D-printed anatomic replica. The model-based exercise has revealed a new “Improved Use” (or, IU) spray usage protocol for viral infections. It entails pointing the spray bottle at a shallower angle (with an almost horizontal placement at the nostril), aiming slightly toward the cheeks. From the conically injected spray droplet simulations, we have summarily derived the following inferences: (a) droplets sized between 7–17  μ m are relatively more efficient at directly reaching the nasopharynx via inhaled transport; and (b) with realistic droplet size distributions, as found in current over-the-counter spray products, the targeted drug delivery through the IU protocol outperforms CU by a remarkable 2 orders-of-magnitude.  more » « less
Award ID(s):
2200052
PAR ID:
10460892
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Drug Delivery
Volume:
3
ISSN:
2674-0850
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Backgroud The nasal route of targeted drug administration facilitates medical management of chronic and acute onsets of various respiratory conditions such as rhinitis and sinusitis and during the initial onset phase of severe acute respiratory syndrome coronavirus 2, when the infection is still contained within the upper airway. Nevertheless, patient comfort issues that are often associated with intranasal devise usage can lead to low compliance, thereby compromising treatment efficacy. Hence, there is an urgent need to detect reproducible and user-friendly intranasal drug delivery modalities that may promote adoption compliance and yet be effective at targeted transport of drugs to the infective airway regions. Methods In this pilot study, we have collected evaluation feedback from a cohort of 13 healthy volunteers, who used an open-angle swirling effect atomizer to assess two different nasal spray administration techniques (with 0.9% saline solution), namely the vertical placement protocol (or, VP), wherein the nozzle is held vertically upright at a shallow insertion depth of 0.5 cm inside the nasal vestibule; and the shallow angle protocol (or, SA), wherein the spray axis is angled at 45° to the vertical, with a vestibular insertion depth of 1.5 cm. The VP protocol is based on current usage instructions, while the SA protocol is derived from published findings on alternate spray orientations that have been shown to enhance targeted drug delivery at posterior infection sites, e.g., the ostiomeatal complex and the nasopharynx. Results All study participants reported that the SA protocol offered a more gentle and soothing delivery experience, with less impact pressure. Additionally, 60% of participants reported that the VP technique caused painful irritation. We also numerically tracked the drug transport processes for the two spray techniques in a computed tomography-based nasal cavity reconstruction; the SA protocol registered a distinct improvement in airway penetration when compared to the VP protocol. Conclusion The participant-reported unequivocally favorable experience with the new SA protocol justifies a full-scale clinical study aimed at testing the related medication compliance parameters and the corresponding therapeutic efficacies. 
    more » « less
  2. Abstract How human respiratory physiology and the transport phenomena associated with inhaled airflow in the upper airway proceed to impact transmission of SARS-CoV-2, leading to the initial infection, stays an open question. An answer can help determine the susceptibility of an individual on exposure to a COVID-2019 carrier and can also provide a preliminary projection of the still-unknown infectious dose for the disease. Computational fluid mechanics enabled tracking of respiratory transport in medical imaging-based anatomic domains shows that the regional deposition of virus-laden inhaled droplets at the initial nasopharyngeal infection site peaks for the droplet size range of approximately 2.5–19$$\upmu $$ μ . Through integrating the numerical findings on inhaled transmission with sputum assessment data from hospitalized COVID-19 patients and earlier measurements of ejecta size distribution generated during regular speech, this study further reveals that the number of virions that may go on to establish the SARS-CoV-2 infection in a subject could merely be in the order of hundreds. 
    more » « less
  3. Recurrent respiratory papillomatosis (RRP) is a chronic condition primarily affecting children, known as juvenile onset RRP (JORRP), caused by a viral infection. Antiviral medications have been used to reduce the need for frequent surgeries, slow the growth of papillomata, and prevent disease spread. Effective treatment of JORRP necessitates targeted drug delivery (TDD) to ensure that inhaled aerosolized drugs reach specific sites, such as the larynx and glottis, without harming healthy tissues. Using computational fluid particle dynamics (CFPD) and machine learning (ML), this study (1) investigated how drug properties and individual factors influence TDD efficiency for JORRP treatment and (2) developed personalized inhalation therapy using an ML-empowered smart inhaler control algorithm for precise medication release. This algorithm optimizes the inhaler nozzle position and diameter based on drug and patient-specific data, enhancing drug delivery to the larynx and glottis. CFPD simulations show that particle size significantly affects deposition fractions in the upper airway, emphasizing the importance of particle size selection. Additionally, optimal nozzle diameter and delivery efficiency depend on particle size, inhalation flow rate, and release time. The ML-based TDD strategy, employing a classification and regression tree model, outperforms conventional inhalation therapy by achieving a higher delivery efficiency to the larynx and glottis. This innovative concept of an ML-empowered smart inhaler represents a promising step toward personalized and precise pulmonary healthcare through inhalation therapy. It demonstrates the potential of AI-driven smart inhalers for improving the treatment outcomes of lung diseases that require TDD at designated lung sites. 
    more » « less
  4. We investigate trajectories of microscale evaporating droplets in a stagnation point flow near a wall of a respiratory airway. The configuration is motivated by the problem of advection and deposition of microscale droplets of respiratory fluids in human airways during transmission of infectious diseases, such as tuberculosis and COVID-19. Laminar boundary layer equations are solved to describe the airflow while the equations of motion of the droplet include contributions from gravity, aerodynamic drag, and Saffman force. Evaporation is accounted for at both the droplet surfaceand the wall of the respiratory airway and is shown to delay droplet deposition as compared to the predictions of isothermal models. Evaporation at the airway wall has a stronger effect on droplet trajectories than evaporation at the droplet surface, leading to droplets being advected away by the flow and thus avoiding deposition in the stagnation point flow region. 
    more » « less
  5. The electrospray process produces micro/nanodroplets for various applications such as thin and uniform coatings, drug carriers and mass spectrometry. In this paper, we study the spray processes of viscoelastic jets using simulations and experiments. In discretized modeling, the jet is perturbed with axisymmetric instability and the growth of this instability causes the jet to break into droplets. For the experiments, a solution of polyvinyl alcohol in water is sprayed and is visualized using a high-speed camera. The droplet size distribution is studied from simulations with experiments for three spray cases: electrospray, air spray, and air-controlled electrospray. Our simulations and experiments reveal that the electric field is effective in reducing the droplet size, while air flow offers more jet break-ups and thus a larger number of droplets. As a result, air-controlled electrospray where these two driving forces are synergistically combined leads to a larger number of smaller droplets than electrospray or air spray. Finally, we applied three spray processes to obtain a deposition of sulfur/mesoporous carbon/graphene/polymer binder composites as a lithium sulfur battery cathode and demonstrated that air-controlled electrospray leads to a higher capacity and rate capability than other processes, exhibiting 800 mA h g −1 at 0.5C and 600 mA h g −1 at 2C. 
    more » « less