skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2200052

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. BackgroundThe global burden of Alzheimer's disease and related dementias is rapidly increasing, particularly in low- and middle-income countries where access to specialized healthcare is limited. Neuropsychological tests are essential diagnostic tools, but their administration requires trained professionals, creating screening barriers. Automated computational assessment presents a cost-effective solution for global dementia screening. ObjectiveTo develop and validate an artificial intelligence-based screening tool using the Trail Making Test (TMT), demographic information, completion times, and drawing analysis for enhanced dementia detection. MethodsWe developed: (1) non-image models using demographics and TMT completion times, (2) image-only models, and (3) fusion models. Models were trained and validated on data from the Framingham Heart Study (FHS) (N = 1252), the Long Life Family Study (LLFS) (N = 1613), and the combined cohort (N = 2865). ResultsOur models, integrating TMT drawings, demographics, and completion times, excelled in distinguishing dementia from normal cognition. In the LLFS cohort, we achieved an Area Under the Receiver Operating Characteristic Curve (AUC) of 98.62%, with sensitivity/specificity of 87.69%/98.26%. In the FHS cohort, we obtained an AUC of 96.51%, with sensitivity/specificity of 85.00%/96.75%. ConclusionsOur method demonstrated superior performance compared to traditional approaches using age and TMT completion time. Adding images captures subtler nuances from the TMT drawing that traditional methods miss. Integrating the TMT drawing into cognitive assessments enables effective dementia screening. Future studies could aim to expand data collection to include more diverse cohorts, particularly from less-resourced regions. 
    more » « less
    Free, publicly-accessible full text available July 17, 2026
  2. Abstract This study reports a comprehensive environmental scan of the generative AI (GenAI) infrastructure in the national network for clinical and translational science across 36 institutions supported by the CTSA Program led by the National Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health (NIH) at the United States. Key findings indicate a diverse range of institutional strategies, with most organizations in the experimental phase of GenAI deployment. The results underscore the need for a more coordinated approach to GenAI governance, emphasizing collaboration among senior leaders, clinicians, information technology staff, and researchers. Our analysis reveals that 53% of institutions identified data security as a primary concern, followed by lack of clinician trust (50%) and AI bias (44%), which must be addressed to ensure the ethical and effective implementation of GenAI technologies. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  3. Abstract INTRODUCTIONIdentification of individuals with mild cognitive impairment (MCI) who are at risk of developing Alzheimer's disease (AD) is crucial for early intervention and selection of clinical trials. METHODSWe applied natural language processing techniques along with machine learning methods to develop a method for automated prediction of progression to AD within 6 years using speech. The study design was evaluated on the neuropsychological test interviews ofn = 166 participants from the Framingham Heart Study, comprising 90 progressive MCI and 76 stable MCI cases. RESULTSOur best models, which used features generated from speech data, as well as age, sex, and education level, achieved an accuracy of 78.5% and a sensitivity of 81.1% to predict MCI‐to‐AD progression within 6 years. DISCUSSIONThe proposed method offers a fully automated procedure, providing an opportunity to develop an inexpensive, broadly accessible, and easy‐to‐administer screening tool for MCI‐to‐AD progression prediction, facilitating development of remote assessment. HighlightsVoice recordings from neuropsychological exams coupled with basic demographics can lead to strong predictive models of progression to dementia from mild cognitive impairment.The study leveraged AI methods for speech recognition and processed the resulting text using language models.The developed AI‐powered pipeline can lead to fully automated assessment that could enable remote and cost‐effective screening and prognosis for Alzehimer's disease. 
    more » « less
  4. Abstract The interpretation of complex biological datasets requires the identification of representative variables that describe the data without critical information loss. This is particularly important in the analysis of large phenotypic datasets (phenomics). Here we introduce Multi-Attribute Subset Selection (MASS), an algorithm which separates a matrix of phenotypes (e.g., yield across microbial species and environmental conditions) into predictor and response sets of conditions. Using mixed integer linear programming, MASS expresses the response conditions as a linear combination of the predictor conditions, while simultaneously searching for the optimally descriptive set of predictors. We apply the algorithm to three microbial datasets and identify environmental conditions that predict phenotypes under other conditions, providing biologically interpretable axes for strain discrimination. MASS could be used to reduce the number of experiments needed to identify species or to map their metabolic capabilities. The generality of the algorithm allows addressing subset selection problems in areas beyond biology. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  5. Abstract Contact tracing forms a crucial part of the public-health toolbox in mitigating and understanding emergent pathogens and nascent disease outbreaks. Contact tracing in the United States was conducted during the pre-Omicron phase of the ongoing COVID-19 pandemic. This tracing relied on voluntary reporting and responses, often using rapid antigen tests due to lack of accessibility to PCR tests. These limitations, combined with SARS-CoV-2’s propensity for asymptomatic transmission, raise the question “how reliable was contact tracing for COVID-19 in the United States”? We answered this question using a Markov model to examine the efficiency with which transmission could be detected based on the design and response rates of contact tracing studies in the United States. Our results suggest that contact tracing protocols in the U.S. are unlikely to have identified more than 1.65% (95% uncertainty interval: 1.62-1.68%) of transmission events with PCR testing and 1.00% (95% uncertainty interval 0.98-1.02%) with rapid antigen testing. When considering a more robust contact tracing scenario, based on compliance rates in East Asia with PCR testing, this increases to 62.7% (95% uncertainty interval: 62.6-62.8%). We did not assume presence of asymptomatic transmission or superspreading, making our estimates upper bounds on the actual percentages traced. These findings highlight the limitations in interpretability for studies of SARS-CoV-2 disease spread based on U.S. contact tracing and underscore the vulnerability of the population to future disease outbreaks, for SARS-CoV-2 and other pathogens. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  6. IntroductionPredictive models have been used to aid early diagnosis of PCOS, though existing models are based on small sample sizes and limited to fertility clinic populations. We built a predictive model using machine learning algorithms based on an outpatient population at risk for PCOS to predict risk and facilitate earlier diagnosis, particularly among those who meet diagnostic criteria but have not received a diagnosis. MethodsThis is a retrospective cohort study from a SafetyNet hospital’s electronic health records (EHR) from 2003-2016. The study population included 30,601 women aged 18-45 years without concurrent endocrinopathy who had any visit to Boston Medical Center for primary care, obstetrics and gynecology, endocrinology, family medicine, or general internal medicine. Four prediction outcomes were assessed for PCOS. The first outcome was PCOS ICD-9 diagnosis with additional model outcomes of algorithm-defined PCOS. The latter was based on Rotterdam criteria and merging laboratory values, radiographic imaging, and ICD data from the EHR to define irregular menstruation, hyperandrogenism, and polycystic ovarian morphology on ultrasound. ResultsWe developed predictive models using four machine learning methods: logistic regression, supported vector machine, gradient boosted trees, and random forests. Hormone values (follicle-stimulating hormone, luteinizing hormone, estradiol, and sex hormone binding globulin) were combined to create a multilayer perceptron score using a neural network classifier. Prediction of PCOS prior to clinical diagnosis in an out-of-sample test set of patients achieved an average AUC of 85%, 81%, 80%, and 82%, respectively in Models I, II, III and IV. Significant positive predictors of PCOS diagnosis across models included hormone levels and obesity; negative predictors included gravidity and positive bHCG. ConclusionMachine learning algorithms were used to predict PCOS based on a large at-risk population. This approach may guide early detection of PCOS within EHR-interfaced populations to facilitate counseling and interventions that may reduce long-term health consequences. Our model illustrates the potential benefits of an artificial intelligence-enabled provider assistance tool that can be integrated into the EHR to reduce delays in diagnosis. However, model validation in other hospital-based populations is necessary. 
    more » « less
  7. Abstract Purpose of ReviewPreparing for pandemics requires a degree of interdisciplinary work that is challenging under the current paradigm. This review summarizes the challenges faced by the field of pandemic science and proposes how to address them. Recent FindingsThe structure of current siloed systems of research organizations hinders effective interdisciplinary pandemic research. Moreover, effective pandemic preparedness requires stakeholders in public policy and health to interact and integrate new findings rapidly, relying on a robust, responsive, and productive research domain. Neither of these requirements are well supported under the current system. SummaryWe propose a new paradigm for pandemic preparedness wherein interdisciplinary research and close collaboration with public policy and health practitioners can improve our ability to prevent, detect, and treat pandemics through tighter integration among domains, rapid and accurate integration, and translation of science to public policy, outreach and education, and improved venues and incentives for sustainable and robust interdisciplinary work. 
    more » « less
  8. Abstract BackgroundHypertension is a prevalent cardiovascular disease with severe longer-term implications. Conventional management based on clinical guidelines does not facilitate personalized treatment that accounts for a richer set of patient characteristics. MethodsRecords from 1/1/2012 to 1/1/2020 at the Boston Medical Center were used, selecting patients with either a hypertension diagnosis or meeting diagnostic criteria (≥ 130 mmHg systolic or ≥ 90 mmHg diastolic, n = 42,752). Models were developed to recommend a class of antihypertensive medications for each patient based on their characteristics. Regression immunized against outliers was combined with a nearest neighbor approach to associate with each patient an affinity group of other patients. This group was then used to make predictions of future Systolic Blood Pressure (SBP) under each prescription type. For each patient, we leveraged these predictions to select the class of medication that minimized their future predicted SBP. ResultsThe proposed model, built with a distributionally robust learning procedure, leads to a reduction of 14.28 mmHg in SBP, on average. This reduction is 70.30% larger than the reduction achieved by the standard-of-care and 7.08% better than the corresponding reduction achieved by the 2nd best model which uses ordinary least squares regression. All derived models outperform following the previous prescription or the current ground truth prescription in the record. We randomly sampled and manually reviewed 350 patient records; 87.71% of these model-generated prescription recommendations passed a sanity check by clinicians. ConclusionOur data-driven approach for personalized hypertension treatment yielded significant improvement compared to the standard-of-care. The model implied potential benefits of computationally deprescribing and can support situations with clinical equipoise. 
    more » « less
  9. Abstract IntroductionAutomated computational assessment of neuropsychological tests would enable widespread, cost‐effective screening for dementia. MethodsA novel natural language processing approach is developed and validated to identify different stages of dementia based on automated transcription of digital voice recordings of subjects’ neuropsychological tests conducted by the Framingham Heart Study (n= 1084). Transcribed sentences from the test were encoded into quantitative data and several models were trained and tested using these data and the participants’ demographic characteristics. ResultsAverage area under the curve (AUC) on the held‐out test data reached 92.6%, 88.0%, and 74.4% for differentiating Normal cognition from Dementia, Normal or Mild Cognitive Impairment (MCI) from Dementia, and Normal from MCI, respectively. DiscussionThe proposed approach offers a fully automated identification of MCI and dementia based on a recorded neuropsychological test, providing an opportunity to develop a remote screening tool that could be adapted easily to any language. 
    more » « less
  10. Free, publicly-accessible full text available December 1, 2026