skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Title: Emerging threats and persistent conservation challenges for freshwater biodiversity

In the 12 years since Dudgeonet al. (2006) reviewed major pressures on freshwater ecosystems, the biodiversity crisis in the world's lakes, reservoirs, rivers, streams and wetlands has deepened. While lakes, reservoirs and rivers cover only 2.3% of the Earth's surface, these ecosystems host at least 9.5% of the Earth's described animal species. Furthermore, using the World Wide Fund for Nature's Living Planet Index, freshwater population declines (83% between 1970 and 2014) continue to outpace contemporaneous declines in marine or terrestrial systems. The Anthropocene has brought multiple new and varied threats that disproportionately impact freshwater systems. We document 12 emerging threats to freshwater biodiversity that are either entirely new since 2006 or have since intensified: (i) changing climates; (ii) e‐commerce and invasions; (iii) infectious diseases; (iv) harmful algal blooms; (v) expanding hydropower; (vi) emerging contaminants; (vii) engineered nanomaterials; (viii) microplastic pollution; (ix) light and noise; (x) freshwater salinisation; (xi) declining calcium; and (xii) cumulative stressors. Effects are evidenced for amphibians, fishes, invertebrates, microbes, plants, turtles and waterbirds, with potential for ecosystem‐level changes through bottom‐up and top‐down processes. In our highly uncertain future, the net effects of these threats raise serious concerns for freshwater ecosystems. However, we also highlight opportunities for conservation gains as a result of novel management tools (e.g. environmental flows, environmental DNA) and specific conservation‐oriented actions (e.g. dam removal, habitat protection policies, managed relocation of species) that have been met with varying levels of success. Moving forward, we advocate hybrid approaches that manage fresh waters as crucial ecosystems for human life support as well as essential hotspots of biodiversity and ecological function. Efforts to reverse global trends in freshwater degradation now depend on bridging an immense gap between the aspirations of conservation biologists and the accelerating rate of species endangerment.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Biological Reviews
Page Range / eLocation ID:
p. 849-873
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Haddon, Lindsay (Ed.)
    Abstract Environmental change and biodiversity loss are but two of the complex challenges facing conservation practitioners and policy makers. Relevant and robust scientific knowledge is critical for providing decision-makers with the actionable evidence needed to inform conservation decisions. In the Anthropocene, science that leads to meaningful improvements in biodiversity conservation, restoration and management is desperately needed. Conservation Physiology has emerged as a discipline that is well-positioned to identify the mechanisms underpinning population declines, predict responses to environmental change and test different in situ and ex situ conservation interventions for diverse taxa and ecosystems. Here we present a consensus list of 10 priority research themes. Within each theme we identify specific research questions (100 in total), answers to which will address conservation problems and should improve the management of biological resources. The themes frame a set of research questions related to the following: (i) adaptation and phenotypic plasticity; (ii) human–induced environmental change; (iii) human–wildlife interactions; (iv) invasive species; (v) methods, biomarkers and monitoring; (vi) policy, engagement and communication; (vii) pollution; (viii) restoration actions; (ix) threatened species; and (x) urban systems. The themes and questions will hopefully guide and inspire researchers while also helping to demonstrate to practitioners and policy makers the many ways in which physiology can help to support their decisions. 
    more » « less
  2. Abstract

    Water security is essential for human well‐being and is among the biggest challenges in environmental governance. Governments and nonprofit organizations alike are gaining increased appreciation for the contributions of intact ecosystems to water security, whereas conservation scientists call for decisive action to address the dire condition of earth's freshwater ecosystems and biodiversity. Stakeholder‐based, Habermasian decision‐making frameworks such as integrated water resources management (IWRM) are widely used to equitably manage complex water systems, and ecologists have developed increasingly sophisticated frameworks (e.g., environmental flows) to quantify and anticipate the ecological outcomes of water management decisions. IWRM implementation is criticized for being excessively top‐down whereas ecological frameworks in water decision‐making can fail to account for the cultural and societal values of ecosystems, and it remains unclear how best to connect the desired bottom‐up implementation of IWRM with the expert‐based, top‐down structure of hydro‐ecological research. We revisit and elaborate upon the ecological stakeholder analog (ESA) concept, which treats ecological phenomena (e.g., species and processes) as stakeholders and ecological information as interests and positions with respect to water management. We then illustrate how ESAs can address the many calls to improve environmental flows and IWRM strategies by improving their integration, and how established conceptual frameworks from stakeholder theory applies readily to ecological stakeholders.

    more » « less
  3. BACKGROUND The Republic of Madagascar is home to a unique assemblage of taxa and a diverse set of ecosystems. These high levels of diversity have arisen over millions of years through complex processes of speciation and extinction. Understanding this extraordinary diversity is crucial for highlighting its global importance and guiding urgent conservation efforts. However, despite the detailed knowledge that exists on some taxonomic groups, there are large knowledge gaps that remain to be filled. ADVANCES Our comprehensive analysis of major taxonomic groups in Madagascar summarizes information on the origin and evolution of terrestrial and freshwater biota, current species richness and endemism, and the utilization of this biodiversity by humans. The depth and breadth of Madagascar’s biodiversity—the product of millions of years of evolution in relative isolation —is still being uncovered. We report a recent acceleration in the scientific description of species but many remain relatively unknown, particularly fungi and most invertebrates. DIGITIZATION Digitization efforts are already increasing the resolution of species richness patterns and we highlight the crucial role of field- and collections-based research for advancing biodiversity knowledge in Madagascar. Phylogenetic diversity patterns mirror that of species richness and endemism in most of the analyzed groups. Among the new data presented, our update on plant numbers estimates 11,516 described vascular plant species native to Madagascar, of which 82% are endemic, in addition to 1215 bryophyte species, of which 28% are endemic. Humid forests are highlighted as centers of diversity because of their role as refugia and centers of recent and rapid radiations, but the distinct endemism of other areas such as the grassland-woodland mosaic of the Central Highlands and the spiny forest of the southwest is also important despite lower species richness. Endemism in Malagasy fungi remains poorly known given the lack of data on the total diversity and global distribution of species. However, our analysis has shown that ~75% of the fungal species detected by environmental sequencing have not been reported as occurring outside of Madagascar. Among the 1314 species of native terrestrial and freshwater vertebrates, levels of endemism are extremely high (90% overall)—all native nonflying terrestrial mammals and native amphibians are found nowhere else on Earth; further, 56% of the island’s birds, 81% of freshwater fishes, 95% of mammals, and 98% of reptile species are endemic. Little is known about endemism in insects, but data from the few well-studied groups on the island suggest that it is similarly high. The uses of Malagasy species are many, with much potential for the uncovering of useful traits for food, medicine, and climate mitigation. OUTLOOK Considerable work remains to be done to fully characterize Madagascar’s biodiversity and evolutionary history. The multitudes of known and potential uses of Malagasy species reported here, in conjunction with the inherent value of this unique and biodiverse region, reinforce the importance of conserving this unique biota in the face of major threats such as habitat loss and overexploitation. The gathering and analysis of data on Madagascar’s remarkable biota must continue and accelerate if we are to safeguard this unique and highly threatened subset of Earth’s biodiversity. Emergence and composition of Madagascar’s extraordinary biodiversity. Madagascar’s biota is the result of over 160 million years of evolution, mostly in geographic isolation, combined with sporadic long distance immigration events and local extinctions. (Left) We show the age of the oldest endemic Malagasy clade for major groups (from bottom to top): arthropods, bony fishes, reptiles, flatworms, birds, amphibians, flowering plants, mammals, non-flowering vascular plants, and mollusks). Humans arrived recently, some 10,000 to 2000 years (top right) and have directly or indirectly caused multiple extinctions (including hippopotamus, elephant birds, giant tortoises, and giant lemurs) and introduced many new species (such as dogs, zebu, rats, African bushpigs, goats, sheep, rice). Endemism is extremely high and unevenly distributed across the island (the heat map depicts Malagasy palm diversity, a group characteristic of the diverse humid forest). Human use of biodiversity is widespread, including 1916 plant species with reported uses. The scientific description of Malagasy biodiversity has accelerated greatly in recent years (bottom right), yet the diversity and evolution of many groups remain practically unknown, and many discoveries await. 
    more » « less
  4. null (Ed.)
    Biodiversity hotspots can serve as protected areas that aid in species conservation. Long-term monitoring of multiple taxonomic groups within biodiversity hotspots can offer insight into factors influencing their dynamics. Mussels (Bivalvia: Unionidae) and fish are highly diverse and imperiled groups of organisms with contrasting life histories that should influence their response to ecological factors associated with local and global change. Here we use historical and contemporary fish and mussel survey data to assess fish and mussel community changes over a 33 year period (1986–2019) and relationships between mussel abundance and their host fish abundance in Bogue Chitto Creek, a tributary of the Alabama River and a biodiversity hotspot. Mussel abundance declined by ~80% and community composition shifted, with eight species previously recorded not found in 2019, and a single individual of the endangered Pleurobema decisum. Fish abundances increased and life history strategies in the community appeared stable and there was no apparent relationship between mussel declines and abundance of host fish. Temporal variation in the proportion of life history traits composing mussel assemblages was also indicative of the disturbances specifically affecting the mussel community. However, changes and declines in mussel assemblages in Bogue Chitto Creek cannot be firmly attributed to any specific factor or events because of gaps in historical environmental and biological data. We believe that mobility differences contributed to differential responses of fish and mussel communities to stressors including habitat degradation, recent droughts and invasive species. Overall, our work indicates that monitoring biodiversity hotspots using hydrological measurements, standardized survey methods and monitoring invasive species abundance would better identify the effects of multiple and interactive stressors that impact disparate taxonomic groups in freshwater ecosystems. 
    more » « less
  5. Giovannoni, Stephen J. (Ed.)
    ABSTRACT Microbial nitrification is a critical process governing nitrogen availability in aquatic systems. Freshwater nitrifiers have received little attention, leaving many unanswered questions about their taxonomic distribution, functional potential, and ecological interactions. Here, we reconstructed genomes to infer the metabolism and ecology of free-living picoplanktonic nitrifiers across the Laurentian Great Lakes, a connected series of five of Earth’s largest lakes. Surprisingly, ammonia-oxidizing bacteria (AOB) related to Nitrosospira dominated over ammonia-oxidizing archaea (AOA) at nearly all stations, with distinct ecotypes prevailing in the transparent, oligotrophic upper lakes compared to Lakes Erie and Ontario. Unexpectedly, one ecotype of Nitrosospira encodes proteorhodopsin, which could enhance survival under conditions where ammonia oxidation is inhibited or substrate limited. Nitrite-oxidizing bacteria (NOB) “ Candidatus Nitrotoga” and Nitrospira fluctuated in dominance, with the latter prevailing in deeper, less-productive basins. Genome reconstructions reveal highly reduced genomes and features consistent with genome streamlining, along with diverse adaptations to sunlight and oxidative stress and widespread capacity for organic nitrogen use. Our findings expand the known functional diversity of nitrifiers and establish their ecological genomics in large lake ecosystems. By elucidating links between microbial biodiversity and biogeochemical cycling, our work also informs ecosystem models of the Laurentian Great Lakes, a critical freshwater resource experiencing rapid environmental change. IMPORTANCE Microorganisms play critical roles in Earth’s nitrogen cycle. In lakes, microorganisms called nitrifiers derive energy from reduced nitrogen compounds. In doing so, they transform nitrogen into a form that can ultimately be lost to the atmosphere by a process called denitrification, which helps mitigate nitrogen pollution from fertilizer runoff and sewage. Despite their importance, freshwater nitrifiers are virtually unexplored. To understand their diversity and function, we reconstructed genomes of freshwater nitrifiers across some of Earth’s largest freshwater lakes, the Laurentian Great Lakes. We discovered several new species of nitrifiers specialized for clear low-nutrient waters and distinct species in comparatively turbid Lake Erie. Surprisingly, one species may be able to harness light energy by using a protein called proteorhodopsin, despite the fact that nitrifiers typically live in deep dark water. Our work reveals the unique biodiversity of the Great Lakes and fills key gaps in our knowledge of an important microbial group, the nitrifiers. 
    more » « less