Abstract ARGONAUTES are the central effector proteins ofRNAsilencing which bind target transcripts in a smallRNA‐guided manner.Arabidopsis thalianahas 10ARGONAUTE(AGO) genes, with specialized roles inRNA‐directedDNAmethylation, post‐transcriptional gene silencing, and antiviral defense. To better understand specialization amongAGOgenes at the level of transcriptional regulation we tested a library of 1497 transcription factors for binding to the promoters ofAGO1,AGO10, andAGO7using yeast 1‐hybrid assays. A ranked list of candidateDNA‐bindingTFs revealed binding of theAGO7promoter by a number of proteins in two families: the miR156‐regulatedSPLfamily and the miR319‐regulatedTCPfamily, both of which have roles in developmental timing and leaf morphology. Possible functions forSPLandTCPbinding are unclear: we showed that these binding sites are not required for the polar expression pattern ofAGO7, nor for the function ofAGO7in leaf shape. NormalAGO7transcription levels and function appear to depend instead on an adjacent 124‐bp region. Progress in understanding the structure of this promoter may aid efforts to understand how the conservedAGO7‐triggeredTAS3pathway functions in timing and polarity.
more »
« less
Conserved role for Ataxin‐2 in mediating endoplasmic reticulum dynamics
Abstract Ataxin‐2, a conserved RNA‐binding protein, is implicated in the late‐onset neurodegenerative disease Spinocerebellar ataxia type‐2 (SCA2). SCA2 is characterized by shrunken dendritic arbors and torpedo‐like axons within the Purkinje neurons of the cerebellum. Torpedo‐like axons have been described to contain displaced endoplasmic reticulum (ER) in the periphery of the cell; however, the role of Ataxin‐2 in mediating ER function in SCA2 is unclear. We utilized theCaenorhabditis elegansandDrosophilahomologs of Ataxin‐2 (ATX‐2 and DAtx2, respectively) to determine the role of Ataxin‐2 in ER function and dynamics in embryos and neurons. Loss of ATX‐2 and DAtx2 resulted in collapse of the ER in dividing embryonic cells and germline, and ultrastructure analysis revealed unique spherical stacks of ER in mature oocytes and fragmented and truncated ER tubules in the embryo. ATX‐2 and DAtx2 reside in puncta adjacent to the ER in bothC. elegansandDrosophilaembryos. Lastly, depletion of DAtx2 in culturedDrosophilaneurons recapitulated the shrunken dendritic arbor phenotype of SCA2. ER morphology and dynamics were severely disrupted in these neurons. Taken together, we provide evidence that Ataxin‐2 plays an evolutionary conserved role in ER dynamics and morphology inC. elegansandDrosophilaembryos during development and in fly neurons, suggesting a possible SCA2 disease mechanism.
more »
« less
- Award ID(s):
- 1716298
- PAR ID:
- 10460947
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Traffic
- Volume:
- 20
- Issue:
- 6
- ISSN:
- 1398-9219
- Page Range / eLocation ID:
- p. 436-447
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Developing improved fluorescent probes for imaging the endoplasmic reticulum (ER) is necessary for structure‐activity studies of this dynamic organelle. Two coumarin‐based compounds with sulfonamide side groups were synthesized and characterized asER‐targeting probes. Their selectivity to target theERin HeLa andGM07373 mammalian cells was shown with co‐localization experiments using commercially available probes that localize in theER, mitochondria, or lysozymes. The hydrophobicity of the coumarin‐based probes was comparable to known probes that partition into theERmembrane. Their cytotoxicity in mammalian cells was low withIC50 values that range from 205 to 252 μm. The fluorescent quantum yields of the coumarin‐based probes when excited with 400 nm light were 0.60, and they have a much narrower emission spectrum (from 435 to 525 nm in methanol) than that of the only commercially availableERprobe that is exited with 400 nm light (ER‐Tracker™ Blue‐WhiteDPX). Thus, the coumarin‐based probes are more useful for multicolor imaging with yellow and red emitting fluorophores. In addition to the above benefits,ERlabeling was achieved with the coumarin‐based probes in both live cells and fixed cells, revealing their versatility for a wide range of cellular imaging applications.more » « less
-
Abstract Rich fens are common boreal ecosystems with distinct hydrology, biogeochemistry and ecology that influence their carbon (C) balance. We present growing season soil chamber methane emission (FCH4), ecosystem respiration (ER), net ecosystem exchange (NEE) and gross primary production (GPP) fluxes from a 9‐years water table manipulation experiment in an Alaskan rich fen. The study included major flood and drought years, where wetting and drying treatments further modified the severity of droughts. Results support previous findings from peatlands that drought causes reduced magnitude of growing seasonFCH4,GPPandNEE, thus reducing or reversing their C sink function. Experimentally exacerbated droughts further reduced the capacity for the fen to act as a C sink by causing shifts in vegetation and thus reducing magnitude of maximum growing seasonGPPin subsequent flood years by ~15% compared to control plots. Conversely, water table position had only a weak influence onER, but dominant contribution toERswitched from autotrophic respiration in wet years to heterotrophic in dry years. Droughts did not cause inter‐annual lag effects onERin this rich fen, as has been observed in several nutrient‐poor peatlands. WhileERwas dependent on soil temperatures at 2 cm depth,FCH4was linked to soil temperatures at 25 cm. Inter‐annual variability of deep soil temperatures was in turn dependent on wetness rather than air temperature, and higherFCH4in flooded years was thus equally due to increased methane production at depth and decreased methane oxidation near the surface. Short‐term fluctuations in wetness caused significant lag effects onFCH4, but droughts caused no inter‐annual lag effects onFCH4. Our results show that frequency and severity of droughts and floods can have characteristic effects on the exchange of greenhouse gases, and emphasize the need to project future hydrological regimes in rich fens.more » « less
-
Summary Traditionally, leaves were thought to be supplied withCO2for photosynthesis by the atmosphere and respiration. Recent studies, however, have shown that the xylem also transports a significant amount of inorganic carbon into leaves through the bulk flow of water. However, little is known about the dynamics and proportion of xylem‐transportedCO2that is assimilated, vs simply lost to transpiration.Cut leaves ofPopulus deltoidesandBrassica napuswere placed in eitherKCl or one of three [NaH13CO3] solutions dissolved in water to simultaneously measure the assimilation and the efflux of xylem‐transportedCO2exiting the leaf across light andCO2response curves in real‐time using a tunable diode laser absorption spectroscope.The rates of assimilation and efflux of xylem‐transportedCO2increased with increasing xylem [13CO2*] and transpiration. Under saturating irradiance, rates of assimilation using xylem‐transportedCO2accounted forc.2.5% of the total assimilation in both species in the highest [13CO2*].The majority of xylem‐transportedCO2is assimilated, and efflux is small compared to respiration. Assimilation of xylem‐transportedCO2comprises a small portion of total photosynthesis, but may be more important whenCO2is limiting.more » « less
-
ObjectiveTo elucidate the role of decorin, a small leucine‐rich proteoglycan, in the degradation of cartilage matrix during the progression of post‐traumatic osteoarthritis (OA). MethodsThree‐month–old decorin‐null (Dcn−/−) and inducible decorin‐knockout (DcniKO) mice were subjected to surgical destabilization of the medial meniscus (DMM) to induce post‐traumaticOA. TheOAphenotype that resulted was evaluated by assessing joint morphology and sulfated glycosaminoglycan (sGAG) staining via histological analysis (n = 6 mice per group), surface collagen fibril nanostructure via scanning electron microscopy (n = 4 mice per group), tissue modulus via atomic force microscopy–nanoindentation (n = 5 or more mice per group) and subchondral bone structure via micro–computed tomography (n = 5 mice per group). Femoral head cartilage explants from wild‐type and Dcn−/−mice were stimulated with the inflammatory cytokine interleukin‐1β (IL‐1β) in vitro (n = 6 mice per group). The resulting chondrocyte response toIL‐1β and release ofsGAGs were quantified. ResultsIn both Dcn−/−and DcniKOmice, the absence of decorin resulted in acceleratedsGAGloss and formation of highly aligned collagen fibrils on the cartilage surface relative to the control (P< 0.05). Also, Dcn−/−mice developed more salient osteophytes, illustrating more severeOA. In cartilage explants treated withIL‐1β, loss of decorin did not alter the expression of either anabolic or catabolic genes. However, a greater proportion ofsGAGs was released to the media from Dcn−/−mouse explants, in both live and devitalized conditions (P< 0.05). ConclusionIn post‐traumaticOA, decorin delays the loss of fragmented aggrecan and fibrillation of cartilage surface, and thus, plays a protective role in ameliorating cartilage degeneration.more » « less