Feature acquisition in predictive modeling is an important task in many practical applications. For example, in patient health prediction, we do not fully observe their personal features and need to dynamically select features to acquire. Our goal is to acquire a small subset of features that maximize prediction performance. Recently, some works reformulated feature acquisition as a Markov decision process and applied reinforcement learning (RL) algorithms, where the reward reflects both prediction performance and feature acquisition cost. However, RL algorithms only use zeroth-order information on the reward, which leads to slow empirical convergence, especially when there are many actions (number of features) to consider. For predictive modeling, it is possible to use first-order information on the reward, i.e., gradients, since we are often given an already collected dataset. Therefore, we propose differentiable feature acquisition (DiFA), which uses a differentiable representation of the feature selection policy to enable gradients to flow from the prediction loss to the policy parameters. We conduct extensive experiments on various real-world datasets and show that DiFA significantly outperforms existing feature acquisition methods when the number of features is large.
more »
« less
VFDS: Variational Foresight Dynamic Selection in Bayesian Neural Networks for Efficient Human Activity Recognition
In many machine learning tasks, input features with varying degrees of predictive capability are acquired at varying costs. In order to optimize the performance-cost trade-off, one would select features to observe a priori. However, given the changing context with previous observations, the subset of predictive features to select may change dynamically. Therefore, we face the challenging new problem of foresight dynamic selection (FDS): finding a dynamic and light-weight policy to decide which features to observe next, before actually observing them, for overall performance-cost trade-offs. To tackle FDS, this paper proposes a Bayesian learning framework of Variational Foresight Dynamic Selection (VFDS). VFDS learns a policy that selects the next feature subset to observe, by optimizing a variational Bayesian objective that characterizes the trade-off between model performance and feature cost. At its core is an implicit variational distribution on binary gates that are dependent on previous observations, which will select the next subset of features to observe. We apply VFDS on the Human Activity Recognition (HAR) task where the performance-cost trade-off is critical in its practice. Extensive results demonstrate that VFDS selects different features under changing contexts, notably saving sensory costs while maintaining or improving the HAR accuracy. Moreover, the features that VFDS dynamically select are shown to be interpretable and associated with the different activity types. We will release the code.
more »
« less
- Award ID(s):
- 2119103
- PAR ID:
- 10460970
- Date Published:
- Journal Name:
- International Conference on Artificial Intelligence and Statistics (AISTATS)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In multi-agent Bayesian optimization for Design Space Exploration (DSE), identifying a communication network among agents to share useful design information for enhanced cooperation and performance, considering the trade-off between connectivity and cost, poses significant challenges. To address this challenge, we develop a distributed multi-agent Bayesian optimization (DMABO) framework and study how communication network structures/connectivity and the resulting cost would impact the performance of a team of agents when finding the global optimum. Specifically, we utilize Lloyd’s algorithm to partition the design space to assign distinct regions to individual agents for exploration in the distributed multi-agent system (MAS). Based on this partitioning, we generate communication networks among agents using two models: 1) a range-limited model of communication constrained by neighborhood information; and 2) a range-free model without neighborhood constraints. We introduce network density as a metric to quantify communication costs. Then, we generate communication networks by gradually increasing the network density to assess the impact of communication costs on the performance of MAS in DSE. The experimental results show that the communication network based on the range-limited model can significantly improve performance without incurring high communication costs. This indicates that increasing the density of a communication network does not necessarily improve MAS performance in DSE. Furthermore, the results indicate that communication is only beneficial for team performance if it occurs between specific agents whose search regions are critically relevant to the location of the global optimum. The proposed DMABO framework and the insights obtained can help identify the best trade-off between communication structure and cost for MAS in unknown design space exploration.more » « less
-
The generalization of representations learned via contrastive learning depends crucially on what features of the data are extracted. However, we observe that the contrastive loss does not always sufficiently guide which features are extracted, a behavior that can negatively impact the performance on downstream tasks via “shortcuts”, i.e., by inadvertently suppressing important predictive features. We find that feature extraction is influenced by the difficulty of the so-called instance discrimination task (i.e., the task of discriminating pairs of similar points from pairs of dissimilar ones). Although harder pairs improve the representation of some features, the improvement comes at the cost of suppressing previously well represented features. In response, we propose implicit feature modification (IFM), a method for altering positive and negative samples in order to guide contrastive models towards capturing a wider variety of predictive features. Empirically, we observe that IFM reduces feature suppression, and as a result improves performance on vision and medical imaging tasks. The code is available at: https://github. com/joshr17/IFM.more » « less
-
null (Ed.)The generalization of representations learned via contrastive learning depends crucially on what features of the data are extracted. However, we observe that the contrastive loss does not always sufficiently guide which features are extracted, a behavior that can negatively impact the performance on downstream tasks via "shortcuts", i.e., by inadvertently suppressing important predictive features. We find that feature extraction is influenced by the difficulty of the so-called instance discrimination task (i.e., the task of discriminating pairs of similar points from pairs of dissimilar ones). Although harder pairs improve the representation of some features, the improvement comes at the cost of suppressing previously well-represented features. In response, we propose implicit feature modification (IFM), a method for altering positive and negative samples in order to guide contrastive models towards capturing a wider variety of predictive features. Empirically, we observe that IFM reduces feature suppression, and as a result, improves performance on vision and medical imaging tasks.more » « less
-
Maintaining operational efficiency while ensuring safety is a longstanding challenge in industrial process control, particularly in high-risk environments. This paper presents a novel Dynamic Risk-Informed Explicit Model Predictive Control (R-eMPC) framework that integrates safety and operational objectives using probabilistic constraints and real-time risk assessments. Unlike traditional approaches, this framework dynamically adjusts safety thresholds based on Bayesian updates, ensuring a balanced trade-off between reliability and efficiency. The validation of this approach is illustrated through a case study on tank level control, a safety-critical process where maintaining the liquid level within predefined safety limits is paramount. The results demonstrate the frameworks capability to optimize performance while maintaining robust safety margins. By emphasizing adaptability and computational efficiency, this research provides a scalable solution for integrating safety into real-time control strategies for similar process systems.more » « less
An official website of the United States government

