skip to main content


Search for: All records

Award ID contains: 2119103

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The design of alloys for use in gas turbine engine blades is a complex task that involves balancing multiple objectives and constraints. Candidate alloys must be ductile at room temperature and retain their yield strength at high temperatures, as well as possess low density, high thermal conductivity, narrow solidification range, high solidus temperature, and a small linear thermal expansion coefficient. Traditional Integrated Computational Materials Engineering (ICME) methods are not sufficient for exploring combinatorially-vast alloy design spaces, optimizing for multiple objectives, nor ensuring that multiple constraints are met. In this work, we propose an approach for solving a constrained multi-objective materials design problem over a large composition space, specifically focusing on the Mo-Nb-Ti-V-W system as a representative Multi-Principal Element Alloy (MPEA) for potential use in next-generation gas turbine blades. Our approach is able to learn and adapt to unknown constraints in the design space, making decisions about the best course of action at each stage of the process. As a result, we identify 21 Pareto-optimal alloys that satisfy all constraints. Our proposed framework is significantly more efficient and faster than a brute force approach.

     
    more » « less
  2. Abstract

    Bayesian optimization (BO) is an indispensable tool to optimize objective functions that either do not have known functional forms or are expensive to evaluate. Currently, optimal experimental design is always conducted within the workflow of BO leading to more efficient exploration of the design space compared to traditional strategies. This can have a significant impact on modern scientific discovery, in particular autonomous materials discovery, which can be viewed as an optimization problem aimed at looking for the maximum (or minimum) point for the desired materials properties. The performance of BO-based experimental design depends not only on the adopted acquisition function but also on the surrogate models that help to approximate underlying objective functions. In this paper, we propose a fully autonomous experimental design framework that uses more adaptive and flexible Bayesian surrogate models in a BO procedure, namely Bayesian multivariate adaptive regression splines and Bayesian additive regression trees. They can overcome the weaknesses of widely used Gaussian process-based methods when faced with relatively high-dimensional design space or non-smooth patterns of objective functions. Both simulation studies and real-world materials science case studies demonstrate their enhanced search efficiency and robustness.

     
    more » « less
  3. Abstract High Entropy Alloys (HEAs) are composed of more than one principal element and constitute a major paradigm in metals research. The HEA space is vast and an exhaustive exploration is improbable. Therefore, a thorough estimation of the phases present in the HEA is of paramount importance for alloy design. Machine Learning presents a feasible and non-expensive method for predicting possible new HEAs on-the-fly. A deep neural network (DNN) model for the elemental system of: Mn, Ni, Fe, Al, Cr, Nb, and Co is developed using a dataset generated by high-throughput computational thermodynamic calculations using Thermo-Calc. The features list used for the neural network is developed based on literature and freely available databases. A feature significance analysis matches the reported HEAs phase constitution trends on elemental properties and further expands it by providing so far-overlooked features. The final regressor has a coefficient of determination ( r 2 ) greater than 0.96 for identifying the most recurrent phases and the functionality is tested by running optimization tasks that simulate those required in alloy design. The DNN developed constitutes an example of an emulator that can be used in fast, real-time materials discovery/design tasks. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Free, publicly-accessible full text available November 1, 2024
  5. Free, publicly-accessible full text available September 1, 2024
  6. Free, publicly-accessible full text available September 1, 2024
  7. Free, publicly-accessible full text available August 1, 2024
  8. Free, publicly-accessible full text available July 1, 2024
  9. Free, publicly-accessible full text available June 1, 2024
  10. Free, publicly-accessible full text available May 1, 2024