skip to main content


Title: Dodecaborane‐Based Dopants Designed to Shield Anion Electrostatics Lead to Increased Carrier Mobility in a Doped Conjugated Polymer
Abstract

One of the most effective ways to tune the electronic properties of conjugated polymers is to dope them with small‐molecule oxidizing agents, creating holes on the polymer and molecular anions. Undesirably, strong electrostatic attraction from the anions of most dopants localizes the holes created on the polymer, reducing their mobility. Here, a new strategy utilizing a substituted boron cluster as a molecular dopant for conjugated polymers is employed. By designing the cluster to have a high redox potential and steric protection of the core‐localized electron density, highly delocalized polarons with mobilities equivalent to films doped with no anions present are obtained. AC Hall effect measurements show that P3HT films doped with these boron clusters have conductivities and polaron mobilities roughly an order of magnitude higher than films doped with F4TCNQ, even though the boron‐cluster‐doped films have poor crystallinity. Moreover, the number of free carriers approximately matches the number of boron clusters, yielding a doping efficiency of ≈100%. These results suggest that shielding the polaron from the anion is a critically important aspect for producing high carrier mobility, and that the high polymer crystallinity required with dopants such as F4TCNQ is primarily to keep the counterions far from the polymer backbone.

 
more » « less
NSF-PAR ID:
10461045
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
31
Issue:
11
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Carrier mobility in doped conjugated polymers is limited by Coulomb interactions with dopant counterions. This complicates studying the effect of the dopant's oxidation potential on carrier generation because different dopants have different Coulomb interactions with polarons on the polymer backbone. Here, dodecaborane (DDB)‐based dopants are used, which electrostatically shield counterions from carriers and have tunable redox potentials at constant size and shape. DDB dopants produce mobile carriers due to spatial separation of the counterion, and those with greater energetic offsets produce more carriers. Neutron reflectometry indicates that dopant infiltration into conjugated polymer films is redox‐potential‐driven. Remarkably, X‐ray scattering shows that despite their large 2‐nm size, DDBs intercalate into the crystalline polymer lamellae like small molecules, indicating that this is the preferred location for dopants of any size. These findings elucidate why doping conjugated polymers usually produces integer, rather than partial charge transfer: dopant counterions effectively intercalate into the lamellae, far from the polarons on the polymer backbone. Finally, it is shown that the IR spectrum provides a simple way to determine polaron mobility. Overall, higher oxidation potentials lead to higher doping efficiencies, with values reaching 100% for driving forces sufficient to dope poorly crystalline regions of the film.

     
    more » « less
  2. There is a critical need to develop a method to pattern semiconducting polymers for device applications on the sub-micrometer scale. Dopant induced solubility control (DISC) patterning is a recently published method for patterning semiconductor polymers that has demonstrated sub-micron resolution. DISC relies on the sequential addition of molecular dopants (here 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ)) to the conjugated polymer. In doped areas, the conjugated polymer is protected from dissolution while in undoped areas, the polymer dissolves into solution. Here we examine factors that affect the resolution of the developed pattern. Two factors are determined to be critical to pattern resolution, the initial crystallinity of the polymer, here poly(3-hexylthiophene) (P3HT), and the quality of the development solvent. We find that dopants diffuse more readily in highly crystalline films than in amorphous films of P3HT and that dopant diffusion reduces the fidelity of the resulting pattern. We also find that the choice of development solvent affects both the fidelity of the pattern and dopant distribution within the patterned polymer domains. Finally, we show that a dopant that diffuses more slowly than F4TCNQ in the P3HT film can be used to pattern the film with higher fidelity. These results together provide a road map for optimizing additive DISC patterning for any polymer/dopant pair. 
    more » « less
  3. Abstract

    When an electron is removed from a conjugated polymer, such as poly(3‐hexylthiophene‐2,5‐diyl) (P3HT), the remaining hole and associated change in the polymer backbone structure from aromatic to quinoidal are referred to as a polaron. Bipolarons are created by removing the unpaired electron from an already‐oxidized polymer segment. In electrochemically‐doped P3HT films, polarons, and bipolarons are readily observed, but in chemically‐doped P3HT films, bipolarons rarely form. This is explained by studying the effects of counterion position on the formation of polarons, strongly coupled polarons, and bipolarons using both spectroscopic and X‐ray diffraction experiments and time‐dependent density functional theory calculations. The counterion positions control whether two polarons spin‐pair to form a bipolaron or whether they strongly couple without spin‐pairing are found. When two counterions lie close to the same polymer segment, bipolarons can form, with an absorption spectrum that is blueshifted from that of a single polaron. Otherwise, polarons at high concentrations do not spin‐pair, but insteadJ‐couple, leading to a redshifted absorption spectrum. The counterion location needed for bipolaron formation is accompanied by a loss of polymer crystallinity. These results explain the observed formation order of single polarons, coupled single polarons, and singlet bipolarons in electrochemically‐ and chemically‐doped conjugated polymers.

     
    more » « less
  4. Doping is required to increase the electrical conductivity of organic semiconductors for uses in electronic and energy conversion devices. The limited number of commonly used p-type dopants suggests that new dopants or doping mechanisms could improve the efficiency of doping and provide new means for processing doped polymers. Drawing on Lewis acid–base pair chemistry, we combined Lewis acid dopant B(C 6 F 5 ) 3 (BCF) with the weak Lewis base benzoyl peroxide (BPO). The detailed behavior of p-type doping of the model polymer poly(3-hexylthiophene) (P3HT) with this Lewis acid–base pair in solution was examined. Solution 19 F-NMR spectra confirmed the formation of the expected counterion, as well as side products from reactions with solvent. BCF : BPO was also found to efficiently dope a range of semiconducting polymers with varying chemical structures demonstrating that the BCF : BPO combination has an effective electron affinity of at least 5.3 eV. In thin films of regioregular P3HT cast from the doped solutions, delocalized polarons formed due to the large counterions leading to a large polaron-counterion distance. At and above 0.2 eq. BCF : BPO doping, amorphous areas of the film became doped, disrupting the structural order of the films. Despite the change in structural order, thin films of regioregular P3HT doped with 0.2 eq. BCF : BPO had a conductivity of 25 S cm −1 . This study demonstrates the effectiveness of a two-component Lewis acid–base doping mechanism and suggests additional two-component Lewis acid–base chemistries should be explored. 
    more » « less
  5. Abstract

    Molecular doping of conjugated polymers causes bleaching of the neutral absorbance and results in new polaron absorbance transitions in the mid and near infrared. Here, the concentration dependent changes in the spectra for a series of molecularly doped diketopyrrolopyrrole (DPP) co‐polymers with a series of ultra‐high electron affinity cyanotrimethylenecyclopropane‐based dopants is analyzed. With these strong dopants the polaron mole fraction (Θ) reaches saturation. Analysis of the full spectrum enables separation of neutral and polaron signals and quantification of the polaron mole fraction using a simple noninteracting site model. The peak ratios for both neutral and polaron peaks change systematically with increasing polaron mole fraction for all measured polymers. Analysis of the spectral changes indicates that the polaron mole fraction can be quantified to within 5%. While the total change in the absorbance spectrum with increasing polaron mole fraction is linear, the lowest energy polaron peak (P1) grows nonlinearly, which indicates increased polarization/delocalization. Molecular doping of polymers that form either H‐ or J‐aggregates shows systematically different spectral changes in the vibronic peak ratios of the neutral spectra and provides insights into the polymer configuration at undoped sites in the film.

     
    more » « less