skip to main content


Title: Layer‐by‐layer nanoparticles for novel delivery of cisplatin and PARP inhibitors for platinum‐based drug resistance therapy in ovarian cancer
Abstract

Advanced staged high‐grade serous ovarian cancer (HGSOC) is the leading cause of gynecological cancer death in the developed world, with 5‐year survival rates of only 25–30% due to late‐stage diagnosis and the shortcomings of platinum‐based therapies. A Phase I clinical trial of a combination of free cisplatin and poly(ADP‐ribose) polymerase inhibitors (PARPis) showed therapeutic benefit for HGSOC. In this study, we address the challenge of resistance to platinum‐based therapy by developing a targeted delivery approach. Novel electrostatic layer‐by‐layer (LbL) liposomal nanoparticles (NPs) with a terminal hyaluronic acid layer that facilitates CD44 receptor targeting are designed for selective targeting of HGSOC cells; the liposomes can be formulated to contain both cisplatin and the PARPi drug within the liposomal core and bilayer. The therapeutic effectiveness of LbL NP‐encapsulated cisplatin and PARPi alone and in combination was compared with the corresponding free drugs in luciferase and CD44‐expressing OVCAR8 orthotopic xenografts in female nude mice. The NPs exhibited prolonged blood circulation half‐life, mechanistic staged drug release and targeted codelivery of the therapeutic agents to HGSOC cells. Moreover, compared to the free drugs, the NPs resulted in significantly reduced tumor metastasis, extended survival, and moderated systemic toxicity.

 
more » « less
NSF-PAR ID:
10461133
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Bioengineering & Translational Medicine
Volume:
4
Issue:
2
ISSN:
2380-6761
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ovarian cancer is especially deadly, challenging to treat, and has proven refractory to known immunotherapies. Cytokine therapy is an attractive strategy to drive a proinflammatory immune response in immunologically cold tumors such as many high grade ovarian cancers; however, this strategy has been limited in the past due to severe toxicity. We previously demonstrated the use of a layer‐by‐layer (LbL) nanoparticle (NP) delivery vehicle in subcutaneous flank tumors to reduce the toxicity of interleukin‐12 (IL‐12) therapy upon intratumoral injection. However, ovarian cancer cannot be treated by local injection as it presents as dispersed metastases. Herein, we demonstrate the use of systemically delivered LbL NPs using a cancer cell membrane‐binding outer layer to effectively target and engage the adaptive immune system as a treatment in multiple orthotopic ovarian tumor models, including immunologically cold tumors. IL‐12 therapy from systemically delivered LbL NPs shows reduced severe toxicity and maintained anti‐tumor efficacy compared to carrier‐free IL‐12 or layer‐free liposomal NPs leading to a 30% complete survival rate.

     
    more » « less
  2. Abstract

    Triple‐negative breast cancer (TNBC) accounts for 15–25% of diagnosed breast cancers, and its lack of a clinically defined therapeutic target has caused patients to suffer from earlier relapse and higher mortality rates than patients with other breast cancer subtypes. MicroRNAs (miRNAs) are small non‐coding RNAs that regulate the expression of multiple genes through RNA interference to maintain normal tissue function. The tumor suppressor miR‐34a is downregulated in TNBC, and its loss‐of‐expression correlates with worse disease outcomes. Therefore, delivering miR‐34a mimics into TNBC cells is a promising strategy to combat disease progression. To achieve this goal, we synthesized layer‐by‐layer assembled nanoparticles (LbL NPs) comprised of spherical poly(lactic‐co‐glycolic acid) cores surrounded by alternating layers of poly‐L‐lysine (PLL) and miR‐34a. TNBC cells internalized these LbL NPs to a greater extent than polyplexes comprised of PLL and miRNA, and confocal microscopy showed that LbL NPs delivered a substantial fraction of miR‐34a cargo into the cytosol. This yielded robust suppression of the miR‐34a target genes CCND‐1, Notch‐1, Bcl‐2, Survivin, and MDR‐1, which reduced TNBC cell proliferation and induced cell cycle arrest. These data validate that miR‐34a delivery can impair TNBC cell function and support continued investigation of this platform for treatment of TNBC.

     
    more » « less
  3. Abstract

    Despite therapeutic advancements, oral cavity squamous cell carcinoma (OCSCC) remains a difficult disease to treat. Systemic platinum-based chemotherapy often leads to dose-limiting toxicity (DLT), affecting quality of life. PRV111 is a nanotechnology-based system for local delivery of cisplatin loaded chitosan particles, that penetrate tumor tissue and lymphatic channels while avoiding systemic circulation and toxicity. Here we evaluate PRV111 using animal models of oral cancer, followed by a clinical trial in patients with OCSCC. In vivo, PRV111 results in elevated cisplatin retention in tumors and negligible systemic levels, compared to the intravenous, intraperitoneal or intratumoral delivery. Furthermore, PRV111 produces robust anti-tumor responses in subcutaneous and orthotopic cancer models and results in complete regression of carcinogen-induced premalignant lesions. In a phase 1/2, open-label, single-arm trial (NCT03502148), primary endpoints of efficacy (≥30% tumor volume reduction) and safety (incidence of DLTs) of neoadjuvant PRV111 were reached, with 69% tumor reduction in ~7 days and over 87% response rate. Secondary endpoints (cisplatin biodistribution, loco-regional control, and technical success) were achieved. No DLTs or drug-related serious adverse events were reported. No locoregional recurrences were evident in 6 months. Integration of PRV111 with current standard of care may improve health outcomes and survival of patients with OCSCC.

     
    more » « less
  4. Inhibition of overexpressed enzymes is among the most promising approaches for targeted cancer treatment. However, many cancer-expressed enzymes are “nonlethal,” in that the inhibition of the enzymes’ activity is insufficient to kill cancer cells. Conventional antibody-based therapeutics can mediate efficient treatment by targeting extracellular nonlethal targets but can hardly target intracellular enzymes. Herein, we report a cancer targeting and treatment strategy to utilize intracellular nonlethal enzymes through a combination of selective cancer stem-like cell (CSC) labeling and Click chemistry-mediated drug delivery. A de novo designed compound, AAMCHO [N-(3,4,6-triacetyl- N-azidoacetylmannosamine)-cis-2-ethyl-3-formylacrylamideglycoside], selectively labeled cancer CSCs in vitro and in vivo through enzymatic oxidation by intracellular aldehyde dehydrogenase 1A1. Notably, azide labeling is more efficient in identifying tumorigenic cell populations than endogenous markers such as CD44. A dibenzocyclooctyne (DBCO)-toxin conjugate, DBCO-MMAE (Monomethylauristatin E), could next target the labeled CSCs in vivo via bioorthogonal Click reaction to achieve excellent anticancer efficacy against a series of tumor models, including orthotopic xenograft, drug-resistant tumor, and lung metastasis with low toxicity. A 5/7 complete remission was observed after single-cycle treatment of an advanced triple-negative breast cancer xenograft (~500 mm3).

     
    more » « less
  5. High-grade serous ovarian cancer (HGSOC) constitutes the majority of all ovarian cancer cases and has staggering rates of both refractory and recurrent disease. While most patients respond to the initial treatment with paclitaxel and platinum-based drugs, up to 25% do not, and of the remaining that do, 75% experience disease recurrence within the subsequent two years. Intrinsic resistance in refractory cases is driven by environmental stressors like tumor hypoxia which alter the tumor microenvironment to promote cancer progression and resistance to anticancer drugs. Recurrent disease describes the acquisition of chemoresistance whereby cancer cells survive the initial exposure to chemotherapy and develop adaptations to enhance their chances of surviving subsequent treatments. Of the environmental stressors cancer cells endure, exposure to hypoxia has been identified as a potent trigger and priming agent for the development of chemoresistance. Both in the presence of the stress of hypoxia or the therapeutic stress of chemotherapy, cancer cells manage to cope and develop adaptations which prime populations to survive in future stress. One adaptation is the modification in the secretome. Chemoresistance is associated with translational reprogramming for increased protein synthesis, ribosome biogenesis, and vesicle trafficking. This leads to increased production of soluble proteins and extracellular vesicles (EVs) involved in autocrine and paracrine signaling processes. Numerous studies have demonstrated that these factors are largely altered between the secretomes of chemosensitive and chemoresistant patients. Such factors include cytokines, growth factors, EVs, and EV-encapsulated microRNAs (miRNAs), which serve to induce invasive molecular, biophysical, and chemoresistant phenotypes in neighboring normal and cancer cells. This review examines the modifications in the secretome of distinct chemoresistant ovarian cancer cell populations and specific secreted factors, which may serve as candidate biomarkers for aggressive and chemoresistant cancers. 
    more » « less