Metabolic sugar labeling followed by the use of reagent‐free click chemistry is an established technique for in vitro cell targeting. However, selective metabolic labeling of the target tissues in vivo remains a challenge to overcome, which has prohibited the use of this technique for targeted in vivo applications. Herein, we report the use of targeted ultrasound pulses to induce the release of tetraacetyl
Inhibition of overexpressed enzymes is among the most promising approaches for targeted cancer treatment. However, many cancer-expressed enzymes are “nonlethal,” in that the inhibition of the enzymes’ activity is insufficient to kill cancer cells. Conventional antibody-based therapeutics can mediate efficient treatment by targeting extracellular nonlethal targets but can hardly target intracellular enzymes. Herein, we report a cancer targeting and treatment strategy to utilize intracellular nonlethal enzymes through a combination of selective cancer stem-like cell (CSC) labeling and Click chemistry-mediated drug delivery. A de novo designed compound, AAMCHO [N-(3,4,6-triacetyl- N-azidoacetylmannosamine)-cis-2-ethyl-3-formylacrylamideglycoside], selectively labeled cancer CSCs in vitro and in vivo through enzymatic oxidation by intracellular aldehyde dehydrogenase 1A1. Notably, azide labeling is more efficient in identifying tumorigenic cell populations than endogenous markers such as CD44. A dibenzocyclooctyne (DBCO)-toxin conjugate, DBCO-MMAE (Monomethylauristatin E), could next target the labeled CSCs in vivo via bioorthogonal Click reaction to achieve excellent anticancer efficacy against a series of tumor models, including orthotopic xenograft, drug-resistant tumor, and lung metastasis with low toxicity. A 5/7 complete remission was observed after single-cycle treatment of an advanced triple-negative breast cancer xenograft (~500 mm3).
more » « less- Award ID(s):
- 2143673
- PAR ID:
- 10484338
- Publisher / Repository:
- National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 120
- Issue:
- 36
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract N ‐azidoacetylmannosamine (Ac4ManAz) from microbubbles (MBs) and its metabolic expression in the cancer area. Ac4ManAz‐loaded MBs showed great stability under physiological conditions, but rapidly collapsed in the presence of tumor‐localized ultrasound pulses. The released Ac4ManAz from MBs was able to label 4T1 tumor cells with azido groups and significantly improved the tumor accumulation of dibenzocyclooctyne (DBCO)‐Cy5 by subsequent click chemistry. We demonstrated for the first time that Ac4ManAz‐loaded MBs coupled with the use of targeted ultrasound could be a simple but powerful tool for in vivo cancer‐selective labeling and targeted cancer therapies. -
Abstract The specific and potent delivery of anticancer drugs to targeted cancer stem cells (CSCs) remains a critical need to maximize on‐target, on‐tumor effects while minimizing on‐target, off‐tumor toxicities. Herein, the designer DNA architecture (DDA)‐templated drug conjugates (DDA‐DCs) customized are presented to deliver daunorubicin (Dau) specifically and potently to a subset of CSCs: acute myeloid leukemia (AML) leukemic stem cells (LSCs) that often maintain minimal residual disease (MRD) and cause relapse. These DDA‐DCs target LSCs via CD117‐ and CD123‐binding aptamers: aptamers that when used alone disrupts the MAP Kinase and apoptosis signaling pathways, leading to a 40% reduction in cell viability over 72 h. These aptamers, when loaded with dsDNA‐intercalating Dau and docked to DDA platforms, exhibit potent and selective cytotoxicity against CD117+/CD123+AML cells, achieving a reduction in effective drug dosage by 500‐fold ex vivo and up to 10‐fold in vivo AML models. These DDA‐DC strategy confers many advantages over other targeted therapies, such as selective cell targeting based on cell surface biomarker profiles (not just individual biomarkers that are often expressed by healthy tissues), titratable affinity, pattern matching, multiplexing, multidrug delivery, and target cell drug sensitization. The combination of these features yields superior anticancer efficacies with minimal off‐target effects.
-
Chemoimmunotherapy that utilizes the immunomodulatory effect of chemotherapeutics has shown great promise for treating poorly immunogenic solid tumors. However, there remains a significant room for improving the synergy between chemotherapy and immunotherapy, including the efficient, concurrent delivery of chemotherapeutics and immunomodulators into tumors. Here, we report the use of metabolic glycan labeling to facilitate cancer-targeted delivery of liposomal chemoimmunotherapy. 4T1 triple-negative breast cancer cells can be metabolically labeled with azido groups for subsequently targeted conjugation of dibenzocycoloctyne (DBCO)-bearing liposomes loaded with doxorubicin and imiquimod (R837) adjuvant via efficient click chemistry. The encased doxorubicin can induce the immunogenic death of cancer cells and upregulate the expression of CD47 and calreticulin on the surface of cancer cells, while R837 can activate dendritic cells for enhanced processing and presentation of tumor antigens. Targeted delivery of liposomes encapsulating doxorubicin and R837 to 4T1 tumors, enabled by metabolic glycan labeling and click chemistry, showed the promise to reshape the immunosuppressive tumor microenvironment of solid tumors. This cancer-targetable liposomal chemoimmunotherapy could provide a new approach to improving conventional chemotherapy.more » « less
-
Systemic, non-viral siRNA delivery for cancer treatment is mainly achieved via condensation by cationic materials ( e.g. , lipids and cationic polymers), which nevertheless, suffers from poor serum stability, non-specific tissue interaction, and unsatisfactory membrane activity against efficient in vivo gene knockdown. Here, we report the design of a metastable, cancer-targeting siRNA delivery system based on two functional polymers, PVBLG-8, a cationic, helical cell-penetrating polypeptide, and poly( l -glutamic acid) (PLG), an anionic random-coiled polypeptide. PVBLG-8 with rigid, linear structure showed weak siRNA condensation capability, and PLG with flexible chains was incorporated as a stabilizer which provided sufficient molecular entanglement with PVBLG-8 to encapsulate the siRNA within the polymeric network. The obtained PVBLG-8/siRNA/PLG nanoparticles (PSP NPs) with positive charges were sequentially coated with additional amount of PLG, which reversed the surface charge from positive to negative to yield the metastable PVBLG-8/siRNA/PLG@PLG (PSPP) NPs. The PSPP NPs featured desired serum stability during circulation to enhance tumor accumulation via the enhanced permeability and retention (EPR) effect. Upon acidification in the tumor extracellular microenvironment and intracellular endosomes, the partial protonation of PLG on PSPP NPs surface would lead to dissociation of PLG coating from NPs, exposure of the highly membrane-active PVBLG-8, and surface charge reversal from negative to positive, which subsequently promoted tumor penetration, selective cancer cell internalization, and efficient endolysosomal escape. When siRNA against epidermal growth factor receptor (EGFR) was encapsulated, the PSPP NPs showed excellent tumor penetration capability, tumor cell uptake level, EGFR silencing efficiency, and tumor growth inhibition efficacy in U-87 MG glioblastoma tumor spheroids in vitro and in xenograft tumor-bearing mice in vivo , outperforming the PSP NPs and several commercial reagents such as Lipofectamine 2000 and poly( l -lysine) (PLL). This study therefore demonstrates a facile and unique design approach of metastable and charge reversal NPs, which overcomes multiple biological barriers against systemic siRNA delivery toward anti-cancer treatment.more » « less
-
Abstract: Mitochondria are important intracellular organelles because of their key roles in cellular metabolism,proliferation, and programmed cell death. The differences in the structure and function of themitochondria of healthy and cancerous cells have made mitochondria an interesting target for drug delivery.Mitochondrial targeting is an emerging field as the targeted delivery of cytotoxic payloads andantioxidants to the mitochondrial DNA is capable of overcoming multidrug resistance. Mitochondrialtargeting is preferred over nuclear targeting because it can take advantage of the distorted metabolismin cancer. The negative membrane potential of the inner and outer mitochondrial membranes, as well astheir lipophilicity, are known to be the features that drive the entry of compatible targeting moiety,along with anticancer drug conjugates, towards mitochondria. The design of such drug nanocarrier conjugatesis challenging because they need not only to target the specific tumor/cancer site but have toovercome multiple barriers as well, such as the cell membrane and mitochondrial membrane. This reviewfocuses on the use of peptide-based nanocarriers (organic nanostructures such as liposomes, inorganic,carbon-based, and polymers) for mitochondrial targeting of the tumor/cancer. Both invitro and in vivo key results are reported.more » « less