Developing efficient and anti‐corrosive oxygen reduction reaction (ORR) catalysts is of great importance for the applications of proton exchange membrane fuel cells (PEMFCs). Herein, we report a novel approach to prepare metal oxides supported intermetallic Pt alloy nanoparticles (NPs) via the reactive metal‐support interaction (RMSI) as ORR catalysts, using Ni‐doped cubic ZrO2(Ni/ZrO2) supported L10−PtNi NPs as a proof of concept. Benefiting from the Ni migration during RMSI, the oxygen vacancy concentrations in the support are increased, leading to an electron enrichment of Pt. The optimal L10−PtNi−Ni/ZrO2−RMSI catalyst achieves remarkably low mass activity (MA) loss (17.8 %) after 400,000 accelerated durability test cycles in a half‐cell and exceptional PEMFC performance (MA=0.76 A mgPt−1at 0.9 V, peak power density=1.52/0.92 W cm−2in H2−O2/−air, and 18.4 % MA decay after 30,000 cycles), representing the best reported Pt‐based ORR catalysts without carbon supports. Density functional theory (DFT) calculations reveal that L10−PtNi−Ni/ZrO2−RMSI requires a lower energetic barrier for ORR than L10−PtNi−Ni/ZrO2(direct loading), which is ascribed to a decreased Bader charge transfer between Pt and *OH, and the improved stability of L10−PtNi−Ni/ZrO2−RMSI compared to L10−PtNi−C can be contributed to the increased adhesion energy and Ni vacancy formation energy within the PtNi alloy.
Engineering the crystal structure of Pt–M (M = transition metal) nanoalloys to chemically ordered ones has drawn increasing attention in oxygen reduction reaction (ORR) electrocatalysis due to their high resistance against M etching in acid. Although Pt–Ni alloy nanoparticles (NPs) have demonstrated respectable initial ORR activity in acid, their stability remains a big challenge due to the fast etching of Ni. In this work, sub‐6 nm monodisperse chemically ordered
- Award ID(s):
- 1828019
- PAR ID:
- 10461196
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Energy Materials
- Volume:
- 9
- Issue:
- 17
- ISSN:
- 1614-6832
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Developing efficient and anti‐corrosive oxygen reduction reaction (ORR) catalysts is of great importance for the applications of proton exchange membrane fuel cells (PEMFCs). Herein, we report a novel approach to prepare metal oxides supported intermetallic Pt alloy nanoparticles (NPs) via the reactive metal‐support interaction (RMSI) as ORR catalysts, using Ni‐doped cubic ZrO2(Ni/ZrO2) supported L10−PtNi NPs as a proof of concept. Benefiting from the Ni migration during RMSI, the oxygen vacancy concentrations in the support are increased, leading to an electron enrichment of Pt. The optimal L10−PtNi−Ni/ZrO2−RMSI catalyst achieves remarkably low mass activity (MA) loss (17.8 %) after 400,000 accelerated durability test cycles in a half‐cell and exceptional PEMFC performance (MA=0.76 A mgPt−1at 0.9 V, peak power density=1.52/0.92 W cm−2in H2−O2/−air, and 18.4 % MA decay after 30,000 cycles), representing the best reported Pt‐based ORR catalysts without carbon supports. Density functional theory (DFT) calculations reveal that L10−PtNi−Ni/ZrO2−RMSI requires a lower energetic barrier for ORR than L10−PtNi−Ni/ZrO2(direct loading), which is ascribed to a decreased Bader charge transfer between Pt and *OH, and the improved stability of L10−PtNi−Ni/ZrO2−RMSI compared to L10−PtNi−C can be contributed to the increased adhesion energy and Ni vacancy formation energy within the PtNi alloy.
-
Abstract To produce efficient ORR catalysts with low Pt content, PtNi porous films (PFs) with sufficiently exposed Pt active sites were designed by an approach combining electrochemical bottom‐up (electrodeposition) and top‐down (anodization) processes. The dynamic oxygen‐bubble template (DOBT) programmably controlled by a square‐wave potential was used to tune the catalyst morphology and expose Pt active facets in PtNi PFs. Surface‐bounded species, such as hydroxyl (OH*, *=surface site) on the exposed PtNi PFs surfaces were adjusted by the applied anodic voltage, further affecting the dynamic oxygen (O2) bubbles adsorption on Pt. As a result, PtNi PF with enriched Pt(111) facets (denoted as Pt3.5 %Ni PF) was obtained, showing prominent ORR activity with an onset potential of 0.92 V (vs. RHE) at an ultra‐low Pt loading (0.015 mg cm−2).
-
Abstract To produce efficient ORR catalysts with low Pt content, PtNi porous films (PFs) with sufficiently exposed Pt active sites were designed by an approach combining electrochemical bottom‐up (electrodeposition) and top‐down (anodization) processes. The dynamic oxygen‐bubble template (DOBT) programmably controlled by a square‐wave potential was used to tune the catalyst morphology and expose Pt active facets in PtNi PFs. Surface‐bounded species, such as hydroxyl (OH*, *=surface site) on the exposed PtNi PFs surfaces were adjusted by the applied anodic voltage, further affecting the dynamic oxygen (O2) bubbles adsorption on Pt. As a result, PtNi PF with enriched Pt(111) facets (denoted as Pt3.5 %Ni PF) was obtained, showing prominent ORR activity with an onset potential of 0.92 V (vs. RHE) at an ultra‐low Pt loading (0.015 mg cm−2).
-
Abstract The commercialization of proton exchange membrane fuel cells (PEMFCs) relies on highly active and stable electrocatalysts for oxygen reduction reaction (ORR) in acid media. The most successful catalysts for this reaction are nanostructured Pt‐alloy with a Pt‐skin. The synthesis of ultrasmall and ordered L10‐PtCo nanoparticle ORR catalysts further doped with a few percent of metals (W, Ga, Zn) is reported. Compared to commercial Pt/C catalyst, the L10‐W‐PtCo/C catalyst shows significant improvement in both initial activity and high‐temperature stability. The L10‐W‐PtCo/C catalyst achieves high activity and stability in the PEMFC after 50 000 voltage cycles at 80 °C, which is superior to the DOE 2020 targets. EXAFS analysis and density functional theory calculations reveal that W doping not only stabilizes the ordered intermetallic structure, but also tunes the Pt‐Pt distances in such a way to optimize the binding energy between Pt and O intermediates on the surface.