skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Title: Probabilistic Representation and Inverse Design of Metamaterials Based on a Deep Generative Model with Semi‐Supervised Learning Strategy
Abstract The research of metamaterials has achieved enormous success in the manipulation of light in a prescribed manner using delicately designed subwavelength structures, so‐called meta‐atoms. Even though modern numerical methods allow for the accurate calculation of the optical response of complex structures, the inverse design of metamaterials, which aims to retrieve the optimal structure according to given requirements, is still a challenging task owing to the nonintuitive and nonunique relationship between physical structures and optical responses. To better unveil this implicit relationship and thus facilitate metamaterial designs, it is proposed to represent metamaterials and model the inverse design problem in a probabilistically generative manner, enabling to elegantly investigate the complex structure–performance relationship in an interpretable way, and solve the one‐to‐many mapping issue that is intractable in a deterministic model. Moreover, to alleviate the burden of numerical calculations when collecting data, a semisupervised learning strategy is developed that allows the model to utilize unlabeled data in addition to labeled data in an end‐to‐end training. On a data‐driven basis, the proposed deep generative model can serve as a comprehensive and efficient tool that accelerates the design, characterization, and even new discovery in the research domain of metamaterials, and photonics in general.  more » « less
Award ID(s):
1916839
PAR ID:
10461222
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
31
Issue:
35
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Metamaterials with functional responses can exhibit varying properties under different conditions (e.g., wave‐based responses or deformation‐induced property variation). This work addresses rapid inverse design of such metamaterials to meet target qualitative functional behaviors, a challenge due to its intractability and nonunique solutions. Unlike data‐intensive and noninterpretable deep‐learning‐based methods, this work proposes the random‐forest‐based interpretable generative inverse design (RIGID), a single‐shot inverse design method for fast generation of metamaterials with on‐demand functional behaviors. RIGID leverages the interpretability of a random forest‐based “design → response” forward model, eliminating the need for a more complex “response → design” inverse model. Based on the likelihood of target satisfaction derived from the trained random forest, one can sample a desired number of design solutions using Markov chain Monte Carlo methods. RIGID is validated on acoustic and optical metamaterial design problems, each with fewer than 250 training samples. Compared to the genetic algorithm‐based design generation approach, RIGID generates satisfactory solutions that cover a broader range of the design space, allowing for better consideration of additional figures of merit beyond target satisfaction. This work offers a new perspective on solving on‐demand inverse design problems, showcasing the potential for incorporating interpretable machine learning into generative design under small data constraints. 
    more » « less
  2. Abstract Auxetic materials have a negative Poisson’s ratio and are of significant interest in applications that include impact mitigation, membrane separations and biomedical engineering. While there are numerous examples of structured materials that exhibit auxetic behavior, the examples of engineered auxetic structures is largely limited to periodic lattice structures that are limited to directional or anisotropic auxetic response. Structures that exhibit a three-dimensionally isotropic auxetic response have been, unfortunately, slow to evolve. Here we introduce an inverse design algorithm based on global node optimization to design three-dimensional auxetic metamaterial structures from disordered networks. After specifying the target Poisson’s ratio for a structure, an inverse design algorithm is used to adjust the positions of all nodes in a disordered network structure until the desired mechanical response is achieved. The proposed algorithm allows independent control of shear and bulk moduli, while preserving the density and connectivity of the networks. When the angle bending stiffness in the network is kept low, it is possible to realize optimized structures with a Poisson’s ratios as low as −0.6. During the optimization, the bulk modulus of these networks decreases by almost two orders of magnitude, but the shear modulus remains largely unaltered. The materials designed in this manner are fabricated by dual-material 3D-printing, and are found to exhibit the mechanical responses that were originally encoded in the computational design engine. The approach proposed here provides a materials-by-design platform that could be extended for engineering of optical, acoustic, and electrical properties, beyond the design of auxetic metamaterials. 
    more » « less
  3. The geometrical arrangement of metamaterials controls their mechanical properties, such as Young’s modulus and the shear modulus. However, optimizing the geometrical arrangement for user-defined performance criteria leads to an inverse problem that is intractable when considering numerous combinations of properties and underlying geometries. Machine-learning techniques have been proven to be effective and practical to accomplish such nonintuitive design tasks. This paper proposes an inverse design framework using conditional generative adversarial networks (CGANs) to explore and optimize two-dimensional metamaterial designs consisting of spinodal topologies, called spinodoids. CGANs are capable of solving the many-to-many inverse problem, which requires generating a group of geometric patterns of representative volume elements with target combinations of mechanical properties. The performance of the networks was validated by numerical simulations with the finite element method. The proposed inverse design framework vastly improves the efficiency of design exploration and optimization of spinodoid metamaterials. 
    more » « less
  4. Abstract This work harnesses interpretable machine learning methods to address the challenging inverse design problem of origami-inspired systems. We established a work flow based on decision tree-random forest method to fit origami databases, containing both design features and functional performance, and to generate human-understandable decision rules for the inverse design of functional origami. First, the tree method is unique because it can handle complex interactions between categorical features and continuous features, allowing it to compare different origami patterns for a design. Second, this interpretable method can tackle multi-objective problems for designing functional origami with multiple and multi-physical performance targets. Finally, the method can extend existing shape-fitting algorithms for origami to consider non-geometrical performance. The proposed framework enables holistic inverse design of origami, considering both shape and function, to build novel reconfigurable structures for various applications such as metamaterials, deployable structures, soft robots, biomedical devices, and many more. 
    more » « less
  5. Abstract Inspired by the recent achievements of machine learning in diverse domains, data-driven metamaterials design has emerged as a compelling paradigm that can unlock the potential of multiscale architectures. The model-centric research trend, however, lacks principled frameworks dedicated to data acquisition, whose quality propagates into the downstream tasks. Often built by naive space-filling design in shape descriptor space, metamaterial datasets suffer from property distributions that are either highly imbalanced or at odds with design tasks of interest. To this end, we present t-METASET: an active learning-based data acquisition framework aiming to guide both diverse and task-aware data generation. Distinctly, we seek a solution to a commonplace yet frequently overlooked scenario at early stages of data-driven design of metamaterials: when a massive (∼O(104)) shape-only library has been prepared with no properties evaluated. The key idea is to harness a data-driven shape descriptor learned from generative models, fit a sparse regressor as a start-up agent, and leverage metrics related to diversity to drive data acquisition to areas that help designers fulfill design goals. We validate the proposed framework in three deployment cases, which encompass general use, task-specific use, and tailorable use. Two large-scale mechanical metamaterial datasets are used to demonstrate the efficacy. Applicable to general image-based design representations, t-METASET could boost future advancements in data-driven design. 
    more » « less