skip to main content


Search for: All records

Award ID contains: 1916839

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    On the basis of the Jones matrix, independent control over the amplitude and phase of light has been demonstrated by combining several meta‐atoms into the supercell of a metasurface. However, due to the intrinsic limitation of a planar achiral structure, the maximum number of independent, complex elements in one Jones matrix is three, giving rise to up to three‐channel amplitude and phase control. In this work, more Jones matrices corresponding to different angles of incidence are proposed to add, so that the degrees of freedom in the amplitude and phase control can be further increased. The supercell of the designed metasurfaces consists of three dielectric nanoblocks with predefined rotation angles and displacements in the 2D space, which can be inversely determined with the help of the genetic algorithm. Empowered by the ability to realize four‐ or even eight‐channel amplitude and phase control, the generation of multiple structured light, including two independent perfect Poincaré beams, two double‐ring perfect Poincaré beams, two perfect Poincaré beam arrays, and four vector vortex beam arrays, is numerically demonstrated. Such novel designs are expected to benefit the development of modern optical applications, including but not limited to optical communications, quantum information, and signal encryption.

     
    more » « less
  2. Abstract

    In this work, mode conversion and wavefront shaping by integrating a metallic metasurface on top of a planar waveguide are proposed and demonstrated. The metasurface consists of C‐shaped nanoantennas. By controlling the orientation of each nanoantenna, mode conversion and focusing effect for the cross‐polarized electric fields inside the waveguide are achieved. The design and simulation results of 16 scenarios of wideband transverse‐magnetic to transverse‐electric mode converters with the mode purity up to 98%, and on‐chip lenses at the wavelength of 1550 nm are reported. It is worth noting that the dimension of the devices along the propagation direction is only 9.6 µm. This work manifests the potential application of mode division multiplexing systems and on‐chip optical interconnections based on metasurfaces.

     
    more » « less
  3. Abstract

    As 2D metamaterials, metasurfaces provide an unprecedented means to manipulate light with the ability to multiplex different functionalities in a single planar device. Currently, most pursuits of multifunctional metasurfaces resort to empirically accommodating more functionalities at the cost of increasing structural complexity, with little effort to investigate the intrinsic restrictions of given meta‐atoms and thus the ultimate limits in the design. In this work, it is proposed to embed machine‐learning models in both gradient‐based and nongradient optimization loops for the automatic implementation of multifunctional metasurfaces. Fundamentally different from the traditional two‐step approach that separates phase retrieval and meta‐atom structural design, the proposed end‐to‐end framework facilitates full exploitation of the prescribed design space and pushes the multifunctional design capacity to its physical limit. With a single‐layer structure that can be readily fabricated, metasurface focusing lenses and holograms are experimentally demonstrated in the near‐infrared region. They show up to eight controllable responses subjected to different combinations of working frequencies and linear polarization states, which are unachievable by the conventional physics‐guided approaches. These results manifest the superior capability of the data‐driven scheme for photonic design, and will accelerate the development of complex devices and systems for optical display, communication, and computing.

     
    more » « less
  4. Abstract

    Mimicry is a biological camouflage phenomenon whereby an organism can change its shape and color to resemble another object. Herein, the idea of biological mimicry and rich degrees of freedom in metasurface designs are combined to realize holographic mimicry devices. A general mathematical method, called phase matrix transformation, to accomplish the holographic mimicry process is proposed. Based on this method, a dynamic metasurface hologram is designed, which shows an image of a “bird” in the air, and a distinct image of a “fish” when the environment is changed to oil. Furthermore, to make the mimicry behavior more generic, holographic mimicry operating at dual wavelengths is also designed and experimentally demonstrated. Moreover, the fully independent phase modulation realized by phase matrix transformation makes the working efficiency of the device relatively higher than the conventional multiwavelength holographic devices with off‐axis illumination or interleaved subarrays. The work potentially opens a new research paradigm interfacing bionics with nanophotonics, which may produce novel applications for optical information encryption, virtual/augmented reality (VR/AR), and military camouflage systems.

     
    more » « less
  5. Abstract

    The research of metamaterials has achieved enormous success in the manipulation of light in a prescribed manner using delicately designed subwavelength structures, so‐called meta‐atoms. Even though modern numerical methods allow for the accurate calculation of the optical response of complex structures, the inverse design of metamaterials, which aims to retrieve the optimal structure according to given requirements, is still a challenging task owing to the nonintuitive and nonunique relationship between physical structures and optical responses. To better unveil this implicit relationship and thus facilitate metamaterial designs, it is proposed to represent metamaterials and model the inverse design problem in a probabilistically generative manner, enabling to elegantly investigate the complex structure–performance relationship in an interpretable way, and solve the one‐to‐many mapping issue that is intractable in a deterministic model. Moreover, to alleviate the burden of numerical calculations when collecting data, a semisupervised learning strategy is developed that allows the model to utilize unlabeled data in addition to labeled data in an end‐to‐end training. On a data‐driven basis, the proposed deep generative model can serve as a comprehensive and efficient tool that accelerates the design, characterization, and even new discovery in the research domain of metamaterials, and photonics in general.

     
    more » « less
  6. Engineered noise can increase the channel capacity for polarization multiplexing with a metasurface hologram. 
    more » « less