Abstract Lithium aluminoborate glasses have recently been found to feature high resistance to crack initiation during indentation, but suffer from relatively low hardness and chemical durability. To further understand the mechanical properties of this glass family and their correlation with the network structure, we here study the effect of adding SiO2to a 25Li2O–20Al2O3–55B2O3glass on the structure and mechanical properties. Addition of silica increases the average network rigidity, but meanwhile its open tetrahedral structure decreases the atomic packing density. Consequently, we only observe a minor increase in hardness and glass transition temperature, and a decrease in Poisson's ratio. The addition of SiO2, and thus removal of Al2O3and/or B2O3, also makes the network less structurally adaptive to applied stress, since Al and B easily increase their coordination number under pressure, while this is not the case for Si under modest pressures. As such, although the silica‐containing networks have more free volume, they cannot densify more during indentation, which in turn leads to an overall decrease in crack resistance upon SiO2addition. Our work shows that, although pure silica glass has very high glass transition temperature and relatively high hardness, its addition in oxide glasses does not necessarily lead to significant increase in these properties due to the complex structural interactions in mixed network former glasses and the competitive effects of free volume and network rigidity.
more »
« less
Breaking the Limit of Micro‐Ductility in Oxide Glasses
Abstract Oxide glasses are one of the most important engineering and functional material families owing to their unique features, such as tailorable physical properties. However, at the same time intrinsic brittleness has been their main drawback, which severely restricts many applications. Despite much progress, a breakthrough in developing ultra‐damage‐resistant and ductile oxide glasses still needs to be made. Here, a critical advancement toward such oxide glasses is presented. In detail, a bulk oxide glass with a record‐high crack resistance is obtained by subjecting a caesium aluminoborate glass to surface aging under humid conditions, enabling it to sustain sharp contact deformations under loads of ≈500 N without forming any strength‐limiting cracks. This ultra‐high crack resistance exceeds that of the annealed oxide glasses by more than one order of magnitude, making this glass micro‐ductile. In addition, a remarkable indentation behavior, i.e., a time‐dependent shrinkage of the indent cavity, is demonstrated. Based on structural analyses, a molecular‐scale deformation model to account for both the ultra‐high crack resistance and the time‐dependent shrinkage in the studied glass is proposed.
more »
« less
- Award ID(s):
- 1762292
- PAR ID:
- 10461307
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Science
- Volume:
- 6
- Issue:
- 18
- ISSN:
- 2198-3844
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Oxide glass, one of the most transformative materials in the modern world, breaks easily under load due to its brittleness. Using classical molecular dynamics simulations, we prepared amorphous alumina by consolidating glass nanoparticles at room temperature. We showed that consolidated amorphous alumina exhibits work hardening ability, hence deforms homogeneously and fractures via necking under tension, while amorphous alumina obtained from the traditional melt‐quench process fractures catastrophically due to severe shear banding. This finding suggests that if processed properly, amorphous oxides could deform and fracture like ductile metals, which will significantly expand the applications of oxide glasses into new areas where load bearing or mechanical reliability is necessary.more » « less
-
Abstract Metal-organic framework glasses feature unique thermal, structural, and chemical properties compared to traditional metallic, organic, and oxide glasses. So far, there is a lack of knowledge of their mechanical properties, especially toughness and strength, owing to the challenge in preparing large bulk glass samples for mechanical testing. However, a recently developed melting method enables fabrication of large bulk glass samples (>25 mm3) from zeolitic imidazolate frameworks. Here, fracture toughness (KIc) of a representative glass, namely ZIF-62 glass (Zn(C3H3N2)1.75(C7H5N2)0.25), is measured using single-edge precracked beam method and simulated using reactive molecular dynamics.KIcis determined to be ~0.1 MPa m0.5, which is even lower than that of brittle oxide glasses due to the preferential breakage of the weak coordinative bonds (Zn-N). The glass is found to exhibit an anomalous brittle-to-ductile transition behavior, considering its low fracture surface energy despite similar Poisson’s ratio to that of many ductile metallic and organic glasses.more » « less
-
Abstract The field strength (FS) effect of six different network modifiers on the elastoplastic properties of aluminoborosilicate glasses was explored using a volumetric recovery study. This work, in conjunction with Part I, explored the intersection of hardness, crack resistance, and other physical properties with glass elasticity. Results showed that (1) the elastic volume fraction decreased with FS for both the alkali and alkaline earth (AE) glasses; (2) the Poisson's ratio did not trend with pile‐up or shear flow volume fraction; (3) the elastic‐to‐plastic deformation ratio increased with applied load and decreased with modifier FS for both the alkali and AE glasses; and (4) an increase in plasticity correlated with increased hardness, crack resistance, and elastic moduli.more » « less
-
Abstract Although the interactions among glass formers and modifiers, for example, connectivity and charge distribution, have been studied extensively in oxide glasses, the impact of a particular modifier species on the mechanical performance of aluminoborosilicate (ABS) glasses is not well understood. This work compares the indentation properties of six ABS glasses, each of which contains a different network modifier (NWM) with varying field strength (FS). Three alkali and three alkaline earth ABS glasses were designed with low NWM content and [NWM] ≈ [Al2O3], to test the modifier FS effect at low concentrations and to maximize three‐coordinated boron. It has been found that both hardness and crack resistance increase with increasing FS in these ABS systems, which is surprising in the context of historical reports. Using11B,27Al, and29Si solid‐state nuclear magnetic resonance, this work provides evidence of how charge distributions differ as a function of NWM species, and how this relates to the observed indentation behaviors.more » « less
An official website of the United States government
