skip to main content


Title: Polyimide‐PEG Segmented Block Copolymer Membranes with High Proton Conductivity by Improving Bicontinuous Nanostructure of Ionic Liquid‐Doped Films
Abstract

The structure and properties of segmented block copolymer films of aromatic polyimide (PI) and poly(ethylene glycol) (PEG) doped with an ionic liquid are studied for potential polymer electrolyte membrane applications for fuel cells. Poly(amic acid) precursors of PI‐PEG copolymers of 4,4′‐(hexafluoroisopropylidene) diphthalic anhydride, 4,4′‐(1,3‐phenylenedioxy) dianiline, and bis(3‐aminopropyl) terminated PEG (Mn≈ 1500) are synthesized and then thermally imidized in membrane films, followed by swelling in ethylammonium nitrate (EAN) ionic liquid. The small‐angle X‐ray scattering results from the EAN‐doped PI‐PEG copolymer films show disordered bicontinuous phase‐separated nanostructures described by Teubner–Strey theory, with the interface fractal dimension determined from the Porod equation. Thermal annealing of the EAN‐doped membranes at 100–140 °C results in increased correlation lengths and smoother interfaces of the bicontinuous nanostructures. Such improved nanostructures lead to the increased ionic conductivity by two to five times with the maximum conductivity of 210 mS cm−1at 60 °C and 70% RH, much greater (nearly fivefold) than that of Nafion films, while maintaining the mechanical stability possibly up to 140 °C. Moreover, the investigation of the disordered bicontinuous phase‐separated nanostructure of EAN‐doped PI‐PEG copolymer membranes is highly relevant to understanding the nanostructures of hydrated Nafion membranes and segmented block copolymers in general.

 
more » « less
NSF-PAR ID:
10461335
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Chemistry and Physics
Volume:
220
Issue:
9
ISSN:
1022-1352
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Alkaline anion exchange membranes (AAEMs) are an important component of alkaline exchange membrane fuel cells (AEMFCs), which facilitate the efficient conversion of fuels to electricity using nonplatinum electrode catalysts. However, low hydroxide conductivity and poor long-term alkaline stability of AAEMs are the major limitations for the widespread application of AEMFCs. In this paper, we report the synthesis of highly conductive and chemically stable AAEMs from the living polymerization oftrans-cyclooctenes. Atrans-cyclooctene–fused imidazolium monomer was designed and synthesized on gram scale. Using these highly ring-strained monomers, we produced a range of block and random copolymers. Surprisingly, AAEMs made from the random copolymer exhibited much higher conductivities than their block copolymer analogs. Investigation by transmission electron microscopy showed that the block copolymers had a disordered microphase segregation which likely impeded ion conduction. A cross-linked random copolymer demonstrated a high level of hydroxide conductivity (134 mS/cm at 80 °C). More importantly, the membranes exhibited excellent chemical stability due to the incorporation of highly alkaline-stable multisubstituted imidazolium cations. No chemical degradation was detected by1H NMR spectroscopy when the polymers were treated with 2 M KOH in CD3OH at 80 °C for 30 d.

     
    more » « less
  2. Abstract

    A novel n‐type copolymer dopant polystyrene–poly(4‐vinyl‐N‐hexylpyridinium fluoride) (PSpF) with fluoride anions is designed and synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization. This is thought to be the first polymeric fluoride dopant. Electrical conductivity of 4.2 S cm–1and high power factor of 67 µW m–1K–2are achieved for PSpF‐doped polymer films, with a corresponding decrease in thermal conductivity as the PSpF concentration is increased, giving the highest ZT of 0.1. An especially high electrical conductivity of 58 S cm–1at 88 °C and outstanding thermal stability are recorded. Further, organic transistors of PSpF‐doped thin films exhibit high electron mobility and Hall mobility of 0.86 and 1.70 cm2V–1s–1, respectively. The results suggest that polystyrene–poly(vinylpyridinium) salt copolymers with fluoride anions are promising for high‐performance n‐type all‐polymer thermoelectrics. This work provides a new way to realize organic thermoelectrics with high conductivity relative to the Seebeck coefficient, high power factor, thermal stability, and broad processing window.

     
    more » « less
  3. Thermoplastic elastomers based on ABA triblock copolymers are typically limited in modulus and strength due to crack propagation within the brittle regions when the hard end-block composition favors morphologies that exhibit connected domains. Increasing the threshold end-block composition to achieve enhanced mechanical performance is possible by increasing the number of junctions or bridging points per chain, but these copolymer characteristics also tend to increase the complexity of the synthesis. Here, we report an in situ polymerization method to successfully increase the number of effective junctions per chain through grafting of poly(styrene) (PS) to a commercial thermoplastic elastomer, poly(styrene)–poly(butadiene)–poly(styrene) (SBS). The strategy described here transforms a linear SBS triblock copolymer–styrene mixture into a linear-comb-linear architecture in which poly(styrene) (PS) grafts from the mid-poly(butadiene) (PBD) block during the polymerization of styrene. Through systematic variation in the initial SBS/styrene content, nanostructural transitions from disordered spheres to lamellar through reaction-induced phase transitions (RIPT) were identified as the styrene content increased. Surprisingly, maximum mechanical performance (Young's modulus, tensile strength, and elongation at break) was obtained with samples exhibiting lamellar nanostructures, corresponding to overall PS contents of 61–77 wt% PS (including the original PS in SBS). The PS grafting from the PBD block increases the modulus and the strength of the thermoplastic elastomer while preventing brittle fracture due to the greater number of junctions afforded by the PS grafts. The work presented here demonstrates the use of RIPT to transform standard SBS materials into polymer systems with enhanced mechanical properties. 
    more » « less
  4. Abstract

    Solid polymer electrolytes for lithium batteries promise improvements in safety and energy density if their conductivity can be increased. Nanostructured block‐copolymer electrolytes specifically have the potential to provide both good ionic conductivity and good mechanical properties. This study shows that the previously neglected nanoscale composition of the polymer electrolyte close to the electrode surface has an important effect on impedance measurements, despite its negligible extent compared to the bulk electrolyte. Using standard stainless steel blocking electrodes, the impedance of lithium salt‐doped poly(isoprene‐b‐styrene‐b‐ethylene oxide) (ISO) exhibits a marked decrease upon thermal processing of the electrolyte. In contrast, covering the electrode surface with a low molecular weight poly(ethylene oxide) (PEO) brush results in higher and more reproducible conductivity values, which are insensitive to the thermal history of the device. A qualitative model of this effect is based on the hypothesis that ISO surface reconstruction at the different electrode surfaces leads to a change in the electrostatic double layer, affecting electrochemical impedance spectroscopy measurements. As a main result, PEO‐brush modification of electrode surfaces is beneficial for the robust electrolyte performance of PEO‐containing block‐copolymers and may be crucial for their accurate characterization and use in Li‐ion batteries.

     
    more » « less
  5. Abstract

    Bis‐carbonylimidazolide (BCI) functionalization enables an efficient synthetic strategy to generate high molecular weight segmented nonisocyanate polyurethanes (NIPUs). Melt phase polymerization of ED‐2003 Jeffamine,4,4′‐methylenebis(cyclohexylamine), and a BCI monomer that mimics a 1,4‐butanediol chain extender enables polyether NIPUs that contain varying concentrations of hard segments ranging from 40 to 80 wt. %. Dynamic mechanical analysis and differential scanning calorimetry reveal thermal transitions for soft, hard, and mixed phases. Hard segment incorporations between 40 and 60 wt. % display up to three distinct phases pertaining to the poly(ethylene glycol) (PEG) soft segmentTg, melting transition, and hard segmentTg, while higher hard segment concentrations prohibit soft segment crystallization, presumably due to restricted molecular mobility from the hard segment. Atomic force microscopy allows for visualization and size determination of nanophase‐separated regimes, revealing a nanoscale rod‐like assembly of HS. Small‐angle X‐ray scattering confirms nanophase separation within the NIPU, characterizing both nanoscale amorphous domains and varying degrees of crystallinity. These NIPUs, which are synthesized with BCI monomers, display expected phase separation that is comparable to isocyanate‐derived analogues. This work demonstrates nanophase separation in BCI‐derived NIPUs and the feasibility of this nonisocyanate synthetic pathway for the preparation of segmented PU copolymers.

     
    more » « less