Hydroxide ion conducting block copolymers have the potential to possess the multiple properties required for anion exchange membranes to enable long-lasting alkaline fuel cell performance, and therefore can accelerate the advancement of the alkaline fuel cell, a low-cost alternative to the well-adopted commercial proton exchange membrane fuel cell. In this paper, an overview of hydroxide ion transport (a property that is proportional to fuel cell performance) in block copolymers will be presented and the subsequent impact of block copolymer morphology on ion transport (conductivity), where the careful design of block copolymer chemistry and chain architecture can accelerate hydroxide ion transport.
more »
« less
Highly conductive and chemically stable alkaline anion exchange membranes via ROMP of trans -cyclooctene derivatives
Alkaline anion exchange membranes (AAEMs) are an important component of alkaline exchange membrane fuel cells (AEMFCs), which facilitate the efficient conversion of fuels to electricity using nonplatinum electrode catalysts. However, low hydroxide conductivity and poor long-term alkaline stability of AAEMs are the major limitations for the widespread application of AEMFCs. In this paper, we report the synthesis of highly conductive and chemically stable AAEMs from the living polymerization oftrans-cyclooctenes. Atrans-cyclooctene–fused imidazolium monomer was designed and synthesized on gram scale. Using these highly ring-strained monomers, we produced a range of block and random copolymers. Surprisingly, AAEMs made from the random copolymer exhibited much higher conductivities than their block copolymer analogs. Investigation by transmission electron microscopy showed that the block copolymers had a disordered microphase segregation which likely impeded ion conduction. A cross-linked random copolymer demonstrated a high level of hydroxide conductivity (134 mS/cm at 80 °C). More importantly, the membranes exhibited excellent chemical stability due to the incorporation of highly alkaline-stable multisubstituted imidazolium cations. No chemical degradation was detected by1H NMR spectroscopy when the polymers were treated with 2 M KOH in CD3OH at 80 °C for 30 d.
more »
« less
- Award ID(s):
- 1719875
- PAR ID:
- 10103644
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- Article No. 201900988
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
One of the most efficient and promising separation alternatives to thermal methods such as distillation is the use of polymeric membranes that separate mixtures based on molecular size or chemical affinity. Self-assembled block copolymer membranes have gained considerable attention within the membrane field due to precise control over nanoscale structure, pore size, and chemical versatility. Despite the rapid progress and excitement, a significant hurdle in using block copolymer membranes for nanometer and sub-nanometer separations such as nanofiltration and reverse osmosis is the lower limit on domain size features. Strategies such as polymer post-functionalization, self-assembly of oligomers, liquid crystals, and random copolymers, or incorporation of artificial/natural channels within block copolymer materials are future directions with the potential to overcome current limitations with respect to separation size.more » « less
-
Abstract Commodity aliphatic and aromatic acrylic‐based copolymers self‐heal due to ubiquitouskey‐and‐lock,ring‐and‐lock, andfluorophilic‐σ‐lockvan der Waals (vdW) interactions. However, the role of these interactions in the presence of covalently copolymerized ionic liquid (IL) is not known. This study is driven by the hypothesis that covalently incorporated cation–anion pairs to form poly(ionic liquid) copolymers (PILCs) can perturb inter‐ or intra‐chain vdW interactions reflected in mechanical and electrical responses. To test this hypothesis, we synthesized a series of PILCs comprising of pentafluorostyrene (PFS) and imidazolium‐based IL monomers with variable‐length aliphatic tails (methyl and butyl). Using a combination of 2D1H‐1H and19F ‐19F NOESY NMR and FTIR measurements supplemented by molecular dynamic (MD) simulations, these studies demonstrate that preferentially alternating/random PILCs topologies facilitate self‐healing. The introduction of cation–anion moieties modifies thefluorophilic‐σ‐lockinteractions and, along with longer aliphatic tails ─(CH2)3CH3covalently attached to the imidazolium cation, enhances cation‐anion mobility, thus faster recovery from mechanical damage occurs. These findings underline how precise control over dipolar and ionic interactions through copolymer composition enables self‐healing in PILCs. These insights may open pathways for designing sustainable, mechanically resilient materials for applications in energy storage and energy harvesting.more » « less
-
Abstract Linear polyphosphonates with the generic formula –[P(Ph)(X)OR′O]n– (X = S or Se) have been synthesized by polycondensations of P(Ph)(NEt2)2and a diol (HOR′OH = 1,4‐cyclohexanedimethanol, 1,4‐benzenedimethanol, tetraethylene glycol, or 1,12‐dodecanediol) followed by reaction with a chalcogen. Random copolymers have been synthesized by polycondensations of P(Ph)(NEt2)2and mixture of two of the diols in a 2:1:1 mol ratio followed by reaction with a chalcogen. Block copolymers with the generic formula –[P(Ph)(X)OR′O](x + 2)–[P(Ph)(X)OR′O](x + 3)– (X = S or Se) have been synthesized by the polycondensations of Et2N[P(Ph)(X)OR′O](x + 2)P(Ph)NEt2oligomers with HOR′O[P(Ph)(X)OR′O](x + 3)H oligomers followed by reaction with a chalcogen. The Et2N[P(Ph)(X)OR′O](x + 2)P(Ph)NEt2oligomers are prepared by the reaction of an excess of P(Ph)(NEt2)2with a diol while the HOR′O[P(Ph)(X)OR′O](x + 3)H oligomers are prepared by the reaction of P(Ph)(NEt2)2with an excess of the diol. In each case the excess, x is the same and determines the average block sizes. All of the polymers were characterized using1H,13C{1H}, and31P{1H} NMR spectroscopy, TGA, DSC, and SEC.31P{1H} NMR spectroscopy demonstrates that the random and block copolymers have the expected arrangements of monomers and, in the case of block copolymers, verifies the block sizes. All polymers are thermally stable up to ~300°C, and the arrangements of monomers in the copolymers (block vs. random) affect their degradation temperatures andTgprofiles. The polymers have weight average MWs of up to 3.8 × 104 Da.more » « less
-
Abstract In this study, pentablock terpolymers with methylpyrrolidinium cations were characterized and investigated as anion exchange membranes and ionomers for solid‐state alkaline fuel cells. The pentablock terpolymer (with methylpyrrolidinium cations) membranes exhibited higher fuel cell power density and durability than commercial FuMA‐Tech (with quaternary ammonium cations) membranes at 30 °C, 100% relative humidity (RH). Optimization of the catalyst ink composition (i.e., solids and solvent ratio) and fuel cell performance of membrane electrode assemblies (MEAs) with pentablock terpolymers as both the membrane and ionomer were also investigated. Optimization of the fuel cell operating conditions corroborates with thein situelectrochemical impedance spectroscopy results. The pentablock terpolymer MEA exhibited a maximum power density of 83.3 mW cm−2and voltage decay rate of 0.7 mV h−1after 100 h of operation under 40 °C, 100% RH. These results show promise for pentablock terptolymers with methylpyrrolidinium cations as a commercially attractive low‐cost alternative anion exchange membrane and ionomer for solid‐state alkaline fuel cells.more » « less
An official website of the United States government
