skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bimodal spore release heights in the water column enhance local retention and population connectivity of bull kelp, Nereocystis luetkeana
Abstract Dispersal of reproductive propagules determines recruitment patterns and connectivity among populations and can influence how populations respond to major disturbance events. Dispersal distributions can depend on propagule release strategies. For instance, the bull kelp,Nereocystis luetkeana, can release propagules (spores) from two heights in the water column (“bimodal release”): at the water surface, directly from the reproductive tissues (sori) on the kelp's blades, and near the seafloor after the sori abscise and sink through the water column.N. luetkeanais a foundation species that occurs from central California to Alaska and is experiencing unprecedented levels of population declines near its southern range limit. We know little of the kelp's dispersal distributions, which could influence population recovery and restoration. Here, we quantify how bimodal spore release heights affect dispersal outcomes based on a numerical model specifically designed forN. luetkeana. The model incorporates oceanographic conditions typical of the species' coastal range and kelp biological traits. With bimodal release heights, 34% of spores are predicted to settle within 10 m of the parental alga and 60% are predicted to disperse beyond 100 m. As an annual species, bimodal release heights can facilitate the local regeneration of adults within a source kelp forest while also supporting connectivity among multiple forests within broader bull kelp metapopulations. To leverage this pattern of bimodal spore dispersal in bull kelp restoration management, directing resources toward strategically located focal populations that can seed other ones could amplify the scale of recovery.  more » « less
Award ID(s):
2146925
PAR ID:
10600945
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Ecology and Evolution
Date Published:
Journal Name:
Ecology and Evolution
Volume:
14
Issue:
8
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. From dispersal-based metapopulations to meta-ecosystems that arise from flows of non-living materials, spatial connectivity is a major driver of population dynamics. One potentially important process is material transport between populations also linked by individual dispersal. Here, I explored material and demographic connectivity in metapopulations of giant kelpMacrocystis pyrifera, a foundation species that produces both detritus and reproductive spores. Kelp detritus (drift) subsidizes grazers, helping maintain the kelp forest ecosystem state. Drift could potentially be exchanged among kelp patches, but this is less studied than spore dispersal. Therefore, I built an ordinary differential equation (ODE) model to investigate conditions under which drift and/or spore connectivity promotes the kelp forest state. I fit statistical models (generalized linear mixed models, GLMMs) to observational data and used the GLMM’s predictions to validate the ODE model. My results suggest kelp patch dynamics are best explained by connectivity of both drift and spores, and that the impacts of these forms of connectivity depend on local grazer (urchin) abundance. Both models predicted greater kelp persistence in well-connected patches across a range of urchin densities. These effects were largely driven by drift, which reduced grazing in recipient patches and thereby enhanced spore recruitment. While testing these predictions will require greater empirical quantification of interpatch drift transport, my findings indicate drift connectivity may be an important spatial process in kelp forest systems. More broadly, this work highlights the role of meta-ecosystem dynamics within a single ecosystem type, reinforcing the need to expand traditional metapopulation perspectives to consider multiple forms of spatial connectivity. 
    more » « less
  2. Thanos Dailianis (Ed.)
    Kelp forest declines have been linked to warming ocean temperatures worldwide. Ocean warming rarely occurs in isolation, so multiple stressor studies are necessary to understand the physiological responses of kelp to climate change. The canopy-forming bull kelp, Nereocystis luetkeana, is going locally extinct in areas of the Salish Sea that are seasonally warm and nutrient poor, while the understory kelp, Saccharina latissima, persists at those sites. Further, nitrogen availability can alter physiological responses of kelps to temperature stress, including alleviating warming stress. We compared the physiological responses of kelp sporophytes to high temperature stress and nitrogen limitation between two populations of N. luetkeana with different environmental histories (warm and nutrient poor vs. cold and nutrient rich) and between two species, N. luetkeana and S. latissima. Using laboratory mesocosms, we tested the interactive effects of short term (8-9 day) exposure of kelp blades to different temperatures: low (9, 13°C), moderate (15, 16°C), and warm (21°C) at two different nitrogen concentrations: low (1-3 μM) vs. high (>10 μM). We examined a wide array of physiological responses: blade growth, photosynthesis, respiration, photosynthetic yield, nutrient uptake, and tissue C:N. Both kelp species responded negatively to elevated temperatures, but not to low nitrogen levels. Blades of both species showed signs of metabolic stress and reduced growth in the warmest temperature treatment (21°C), at both high and low nitrogen levels, suggesting that N. luetkeana and S. latissima are susceptible to thermal stress over short time periods. Populations of N. luetkeana from warm, nutrient poor and cool, nutrient rich areas were equally susceptible to the effects of ocean warming. Our results suggest that nutrient additions may actually reduce kelp performance at supra-optimal temperatures, and a thorough understanding of kelp responses to coastal temperature and nutrient dynamics is needed to guide conservation and restoration actions. 
    more » « less
  3. Summary Dispersal is a key process driving local‐scale community assembly and global‐scale biogeography of plant symbiotic arbuscular mycorrhizal (AM) fungal communities. A trait‐based approach could improve predictions regarding how AM fungal aerial dispersal varies by species.We conducted month‐long collections of aerial AM fungi for 12 consecutive months in an urban mesic environment at heights of 20 m. We measured morphological functional traits of collected spores and assessed aerial AM fungal community structure both morphologically and with high‐throughput sequencing.Large numbers of AM fungal spores were present in the air over the course of 1 yr, and these spores exhibited traits that facilitate aerial dispersal. Measured aerial spores were smaller than average for Glomeromycotinan fungi. Trait‐based predictions indicate that nearly one third of described species from diverse genera demonstrate the potential for aerial dispersal. Diversity of aerial AM fungi was relatively high (20 spore species and 17 virtual taxa), and both spore abundance and community structure shifted temporally.The prevalence of aerial dispersal in AM fungi is perhaps greater than previously indicated, and a hypothesized model of AM fungal aerial dispersal mechanisms is presented. Anthropogenic soil impacts may liberate AM fungal propagules initiating the dispersal of ruderal species. 
    more » « less
  4. Thomas Wernberg (Ed.)
    Warming ocean temperatures have been linked to kelp forest declines worldwide, and elevated temperatures can act synergistically with other local stressors to exacerbate kelp loss. The bull kelp Nereocystis luetkeana is the primary canopy‐forming kelp species in the Salish Sea, where it is declining in areas with elevated summer water temperatures and low nutrient concentrations. To determine the interactive effects of these two stressors on microscopic stages of N. luetkeana, we cultured gametophytes and microscopic sporophytes from seven different Salish Sea populations across seven different temperatures (10–22°C) and two nitrogen concentrations. The thermal tolerance of microscopic gametophytes and sporophytes was similar across populations, and high temperatures were more stressful than low nitrogen levels. Additional nitrogen did not improve gametophyte or sporophyte survival at high temperatures. Gametophyte densities were highest between 10 and 16°C and declined sharply at 18°C, and temperatures of 20 and 22°C were lethal. The window for successful sporophyte production was narrower, peaking at 10–14°C. Across all populations, the warmest temperature at which sporophytes were produced was 16 or 18°C, but sporophyte densities were 78% lower at 16°C and 95% lower at 18°C compared to cooler temperatures. In the field, bottom temperatures revealed that the thermal limits of gametophyte growth (18°C) and sporophyte production (16–18°C) were reached during the summer at multiple sites. Prolonged exposure of bull kelp gametophytes to temperatures of 16°C and above could limit reproduction, and therefore recruitment, of adult kelp sporophytes. 
    more » « less
  5. These data describe the estimated dispersal duration of spores of giant kelp, Macrocystis pyrifera, among connectivity cells in a high-resolution, three-dimensional, spatiotemporally-explicit ocean circulation model (Regional Oceanic Modeling System, ROMS) in southern California, USA, for an 11-year period from the beginning of 1996 to the end of 2006. Asymmetrical and dynamic estimates of giant kelp spore dispersal durations connecting source and destination ROMS cells were estimated on monthly and annual timescales using minimum mean transit times. 
    more » « less