skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Establishing microbial co‐cultures for 3‐hydroxybenzoic acid biosynthesis on glycerol
Abstract Converting renewable feedstocks to aromatic compounds using engineered microbes offers a robust approach for sustainable, environment‐friendly, and cost‐effective production of these value‐added products without the reliance on petroleum. In this study, rationally designedE. coli–E. colico‐culture systems were established for converting glycerol to 3‐hydroxybenzoic acid (3HB). Specifically, the 3HB pathway was modularized and accommodated by two metabolically engineeredE. colistrains. The co‐culture biosynthesis was optimized by using different cultivation temperatures, varying the inoculum ratio between the co‐culture strains, recruitment of a key pathway intermediate transporter, strengthening the critical pathway enzyme expression, and adjusting the timing for inducing pathway gene expression. Compared with theE. colimono‐culture, the optimized co‐culture showed 5.3‐fold improvement for 3HB biosynthesis. This study demonstrated the applicability of modular co‐culture engineering for addressing the challenges of aromatic compound biosynthesis.  more » « less
Award ID(s):
1706058
PAR ID:
10461388
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Engineering in Life Sciences
Volume:
19
Issue:
5
ISSN:
1618-0240
Format(s):
Medium: X Size: p. 389-395
Size(s):
p. 389-395
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Modular co‐culture engineering is an emerging approach for biosynthesis of complex natural products. In this study, microbial co‐cultures composed of two and threeEscherichia colistrains, respectively, are constructed for de novo biosynthesis of flavonoid acacetin, a value‐added natural compound possessing numerous demonstrated biological activities, from simple carbon substrate glucose. To this end, the heterologous biosynthetic pathway is divided into different modules, each of which is accommodated in a dedicatedE. colistrain for functional expression. After the optimization of the inoculation ratio between the constituent strains, the engineered co‐cultures show a 4.83‐fold improvement in production comparing to the mono‐culture controls. Importantly, cultivation of the three‐strain co‐culture in shake flasks result in the production of 20.3 mg L−1acacetin after 48 h. To the authors' knowledge, this is the first report on acacetin de novo biosynthesis in a heterologous microbial host. The results of this work confirm the effectiveness of modular co‐culture engineering for complex flavonoid biosynthesis. 
    more » « less
  2. Abstract Heterologous expression of polyketide synthase (PKS) genes inEscherichia colihas enabled the production of various valuable natural and synthetic products. However, the limited availability of malonyl-CoA (M-CoA) inE. coliremains a substantial impediment to high-titer polyketide production. Here we address this limitation by disrupting the native M-CoA biosynthetic pathway and introducing an orthogonal pathway comprising a malonate transporter and M-CoA ligase, enabling efficient M-CoA biosynthesis under malonate supplementation. This approach substantially increases M-CoA levels, enhancing fatty acid and polyketide titers while reducing the promiscuous activity of PKSs toward undesired acyl-CoA substrates. Subsequent adaptive laboratory evolution of these strains provides insights into M-CoA regulation and identifies mutations that further boost M-CoA and polyketide production. This strategy improvesE. colias a host for polyketide biosynthesis and advances understanding of M-CoA metabolism in microbial systems. 
    more » « less
  3. Bradford, Patricia A. (Ed.)
    ABSTRACT Efflux and motility are two key biological functions in bacteria. Recent findings have shown that efflux impacts flagellum biosynthesis and motility inEscherichia coliand other bacteria. AcrR is known to be the major transcriptional repressor of AcrAB-TolC, the main multidrug efflux pump inE. coliand otherEnterobacteriaceae. However, the underlying molecular mechanisms of how efflux and motility are co-regulated remain poorly understood. Here, we have studied the role of AcrR in direct regulation of motility inE. coli. By combining bioinformatics, electrophoretic mobility shift assays (EMSAs), gene expression, and motility experiments, we have found that AcrR represses motility inE. coliby directly repressing transcription of theflhDCoperon, but not the other flagellum genes/operons tested.flhDCencodes the master regulator of flagellum biosynthesis and motility genes. We found that such regulation primarily occurs by direct binding of AcrR to theflhDCpromoter region containing the first of the two predicted AcrR-binding sites identified in this promoter. This is the first report of direct regulation by AcrR of genes unrelated to efflux or detoxification. Moreover, we report that overexpression of AcrR restores to parental levels the increased swimming motility previously observed inE. colistrains without a functional AcrAB-TolC pump, and that such effect by AcrR is prevented by the AcrR ligand and AcrAB-TolC substrate ethidium bromide. Based on these and prior findings, we provide a novel model in which AcrR senses efflux and then co-regulates efflux and motility inE. colito maintain homeostasis and escape hazards. IMPORTANCEEfflux and motility play a major role in bacterial growth, colonization, and survival. InEscherichia coli, the transcriptional repressor AcrR is known to directly repress efflux and was later found to also repress flagellum biosynthesis and motility by Kim et al. (J Microbiol Biotechnol 26:1824–1828, 2016, doi: 10.4014/jmb.1607.07058). However, it remained unknown whether AcrR represses flagellum biosynthesis and motility directly and through which target genes, or indirectly because of altering the amount of efflux. This study reveals that AcrR represses flagellum biosynthesis and motility by directly repressing the expression of theflhDCmaster regulator of flagellum biosynthesis and motility genes, but not the other flagellum genes tested. We also show that the antimicrobial, efflux pump substrate, and AcrR ligand ethidium bromide regulates motility via AcrR. Overall, these findings support a novel model of direct co-regulation of efflux and motility mediated by AcrR in response to stress inE. coli. 
    more » « less
  4. Abstract BackgroundDepolymerizing polyethylene terephthalate (PET) plastics using enzymes, such as PETase, offers a sustainable chemical recycling route. To enhance degradation, many groups have sought to engineer PETase for faster catalysis on PET and elevated stability. Considerably less effort has been focused toward expressing large quantities of the enzyme, which is necessary for large-scale application and widespread use. In this work, we evaluated severalE. colistrains for their potential to produce soluble, folded, and activeIsPETase, and moved the production to a benchtop bioreactor. As PETase is known to require disulfide bonds to be functional, we screened several disulfide-bond promoting strains ofE. colito produceIsPETase, FAST-PETase and Hot-PETase. ResultsWe found expression in SHuffle T7 Express results in higher active expression ofIsPETase compared to standardE. coliproduction strains such as BL21(DE3), reaching a purified titer of 20 mg enzyme per L of culture from shake flasks using 2xLB medium. We characterized purifiedIsPETase on 4-nitrophenyl acetate and PET microplastics, showing the enzyme produced in the disulfide-bond promoting host has high activity. Using a complex medium with glycerol and a controlled bioreactor,IsPETase titer reached 104 mg per L for a 46-h culture. FAST-PETase was found to be produced at similar levels in BL21(DE3) or SHuffle T7 Express, with purified production reaching 65 mg per L culture when made in BL21(DE3). Hot-PETase titers were greatest in BL21(DE3) reaching 77 mg per L culture. ConclusionsWe provide protein expression methods to produce three important PETase variants. Importantly, forIsPETase, changing expression host, medium optimization and movement to a bioreactor resulted in a 50-fold improvement in production amount with a per cell dry weight productivity of 0.45 mgPETasegCDW−1 h−1, which is tenfold greater than that forK. pastoris. We show that the benefit of using SHuffle T7 Express for expression only extends toIsPETase, with FAST-PETase and Hot-PETase better produced and purified from BL21(DE3), which is unexpected given the number of cysteines present. This work represents a systematic evaluation of protein expression and purification conditions for PETase variants to permit further study of these important enzymes. 
    more » « less
  5. SUMMARY Previous comparative and experimental evolution studies have suggested how fungi may rapidly adapt to new environments, but direct observation ofin situselection in fungal populations is rare due to challenges with tracking populations over human time scales. We monitored a population ofPenicillium solitumover eight years in a cheese cave and documented a phenotypic shift from predominantly green to white strains. Diverse mutations in thealb1gene, which encodes the first protein in the DHN-melanin biosynthesis pathway, explained the green to white shift. A similar phenotypic shift was recapitulated with analb1knockout and experimental evolution in laboratory populations. The most common genetic disruption of thealb1genomic region was caused by putative transposable element insertions upstream of the gene. White strains had substantial downregulation in global transcription, with genetically distinct white strains possessing divergent shifts in expression of different biological processes. White strains outcompeted green strains in co-culture, but this competitive advantage was only observed in the absence of light, suggesting that loss of melanin is only adaptive in dark conditions. Our results illustrate how fermented food production by humans provides opportunities for relaxed selection of key fungal traits over short time scales. Unintentional domestication of microbes by cheesemakers may provide opportunities to generate new strains for innovation in traditional cheese production. 
    more » « less