Abstract Converting renewable feedstocks to aromatic compounds using engineered microbes offers a robust approach for sustainable, environment‐friendly, and cost‐effective production of these value‐added products without the reliance on petroleum. In this study, rationally designedE. coli–E. colico‐culture systems were established for converting glycerol to 3‐hydroxybenzoic acid (3HB). Specifically, the 3HB pathway was modularized and accommodated by two metabolically engineeredE. colistrains. The co‐culture biosynthesis was optimized by using different cultivation temperatures, varying the inoculum ratio between the co‐culture strains, recruitment of a key pathway intermediate transporter, strengthening the critical pathway enzyme expression, and adjusting the timing for inducing pathway gene expression. Compared with theE. colimono‐culture, the optimized co‐culture showed 5.3‐fold improvement for 3HB biosynthesis. This study demonstrated the applicability of modular co‐culture engineering for addressing the challenges of aromatic compound biosynthesis.
more »
« less
Engineering controllable alteration of malonyl-CoA levels to enhance polyketide production
Abstract Heterologous expression of polyketide synthase (PKS) genes inEscherichia colihas enabled the production of various valuable natural and synthetic products. However, the limited availability of malonyl-CoA (M-CoA) inE. coliremains a substantial impediment to high-titer polyketide production. Here we address this limitation by disrupting the native M-CoA biosynthetic pathway and introducing an orthogonal pathway comprising a malonate transporter and M-CoA ligase, enabling efficient M-CoA biosynthesis under malonate supplementation. This approach substantially increases M-CoA levels, enhancing fatty acid and polyketide titers while reducing the promiscuous activity of PKSs toward undesired acyl-CoA substrates. Subsequent adaptive laboratory evolution of these strains provides insights into M-CoA regulation and identifies mutations that further boost M-CoA and polyketide production. This strategy improvesE. colias a host for polyketide biosynthesis and advances understanding of M-CoA metabolism in microbial systems.
more »
« less
- Award ID(s):
- 2036849
- PAR ID:
- 10599764
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Chemical Biology
- Volume:
- 21
- Issue:
- 8
- ISSN:
- 1552-4450
- Format(s):
- Medium: X Size: p. 1214-1225
- Size(s):
- p. 1214-1225
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Modular co‐culture engineering is an emerging approach for biosynthesis of complex natural products. In this study, microbial co‐cultures composed of two and threeEscherichia colistrains, respectively, are constructed for de novo biosynthesis of flavonoid acacetin, a value‐added natural compound possessing numerous demonstrated biological activities, from simple carbon substrate glucose. To this end, the heterologous biosynthetic pathway is divided into different modules, each of which is accommodated in a dedicatedE. colistrain for functional expression. After the optimization of the inoculation ratio between the constituent strains, the engineered co‐cultures show a 4.83‐fold improvement in production comparing to the mono‐culture controls. Importantly, cultivation of the three‐strain co‐culture in shake flasks result in the production of 20.3 mg L−1acacetin after 48 h. To the authors' knowledge, this is the first report on acacetin de novo biosynthesis in a heterologous microbial host. The results of this work confirm the effectiveness of modular co‐culture engineering for complex flavonoid biosynthesis.more » « less
-
Abstract The microbial product citramalic acid (citramalate) serves as a five‐carbon precursor for the chemical synthesis of methacrylic acid. This biochemical is synthesized inEscherichia colidirectly by the condensation of pyruvate and acetyl‐CoA via the enzyme citramalate synthase. The principal competing enzyme with citramalate synthase is citrate synthase, which mediates the condensation reaction of oxaloacetate and acetyl‐CoA to form citrate and begin the tricarboxylic acid cycle. A deletion in thegltAgene coding citrate synthase prevents acetyl‐CoA flux into the tricarboxylic acid cycle, and thus necessitates the addition of glutamate. In this study theE. colicitrate synthase was engineered to contain point mutations intended to reduce the enzyme's affinity for acetyl‐CoA, but not eliminate its activity. Cell growth, enzyme activity and citramalate production were compared in several variants in shake flasks and controlled fermenters. Citrate synthase GltA[F383M] not only facilitated cell growth without the presence of glutamate, but also improved the citramalate production by 125% compared with the control strain containing the native citrate synthase in batch fermentation. An exponential feeding strategy was employed in a fed‐batch process using MEC626/pZE12‐cimAharboring the GltA[F383M] variant, which generated over 60 g/L citramalate with a yield of 0.53 g citramalate/g glucose in 132 hr. These results demonstrate protein engineering can be used as an effective tool to redirect carbon flux by reducing enzyme activity and improve the microbial production of traditional commodity chemicals.more » « less
-
Abstract Mevalonate is a key precursor in isoprenoid biosynthesis and a promising commodity chemical. Although mevalonate is a native metabolite in Saccharomyces cerevisiae, its production is challenged by the relatively low flux toward acetyl-CoA in this yeast. In this study we explore different approaches to increase acetyl-CoA supply in S. cerevisiae to boost mevalonate production. Stable integration of a feedback-insensitive acetyl-CoA synthetase (Se-acsL641P) from Salmonella enterica and the mevalonate pathway from Enterococcus faecalis results in the production of 1,390 ± 10 mg/l of mevalonate from glucose. While bifid shunt enzymes failed to improve titers in high-producing strains, inhibition of squalene synthase (ERG9) results in a significant enhancement. Finally, increasing coenzyme A (CoA) biosynthesis by overexpression of pantothenate kinase (CAB1) and pantothenate supplementation further increased production to 3,830 ± 120 mg/l. Using strains that combine these strategies in lab-scale bioreactors results in the production of 13.3 ± 0.5 g/l, which is ∼360-fold higher than previously reported mevalonate titers in yeast. This study demonstrates the feasibility of engineering S. cerevisiae for high-level mevalonate production.more » « less
-
Bradford, Patricia A. (Ed.)ABSTRACT Efflux and motility are two key biological functions in bacteria. Recent findings have shown that efflux impacts flagellum biosynthesis and motility inEscherichia coliand other bacteria. AcrR is known to be the major transcriptional repressor of AcrAB-TolC, the main multidrug efflux pump inE. coliand otherEnterobacteriaceae. However, the underlying molecular mechanisms of how efflux and motility are co-regulated remain poorly understood. Here, we have studied the role of AcrR in direct regulation of motility inE. coli. By combining bioinformatics, electrophoretic mobility shift assays (EMSAs), gene expression, and motility experiments, we have found that AcrR represses motility inE. coliby directly repressing transcription of theflhDCoperon, but not the other flagellum genes/operons tested.flhDCencodes the master regulator of flagellum biosynthesis and motility genes. We found that such regulation primarily occurs by direct binding of AcrR to theflhDCpromoter region containing the first of the two predicted AcrR-binding sites identified in this promoter. This is the first report of direct regulation by AcrR of genes unrelated to efflux or detoxification. Moreover, we report that overexpression of AcrR restores to parental levels the increased swimming motility previously observed inE. colistrains without a functional AcrAB-TolC pump, and that such effect by AcrR is prevented by the AcrR ligand and AcrAB-TolC substrate ethidium bromide. Based on these and prior findings, we provide a novel model in which AcrR senses efflux and then co-regulates efflux and motility inE. colito maintain homeostasis and escape hazards. IMPORTANCEEfflux and motility play a major role in bacterial growth, colonization, and survival. InEscherichia coli, the transcriptional repressor AcrR is known to directly repress efflux and was later found to also repress flagellum biosynthesis and motility by Kim et al. (J Microbiol Biotechnol 26:1824–1828, 2016, doi: 10.4014/jmb.1607.07058). However, it remained unknown whether AcrR represses flagellum biosynthesis and motility directly and through which target genes, or indirectly because of altering the amount of efflux. This study reveals that AcrR represses flagellum biosynthesis and motility by directly repressing the expression of theflhDCmaster regulator of flagellum biosynthesis and motility genes, but not the other flagellum genes tested. We also show that the antimicrobial, efflux pump substrate, and AcrR ligand ethidium bromide regulates motility via AcrR. Overall, these findings support a novel model of direct co-regulation of efflux and motility mediated by AcrR in response to stress inE. coli.more » « less
An official website of the United States government
