Abstract Diatom exoskeletons, known as frustules, exhibit a unique multilayer structure that has attracted considerable attention across interdisciplinary research fields as a source of biomorphic inspiration. These frustules possess a hierarchical porous structure, ranging from millimeter‐scale foramen pores to nanometer‐scale cribellum pores. In this study, this natural template for nanopattern design is leveraged to showcase metamaterials that integrates perfect absorption and subwavelength color printing. The cribellum‐inspired hierarchical nanopatterns, organized in a hexagonal unit cell with a periodicity of 300 nm, are realized through a single‐step electron beam lithography process. By employing numerical models, it is uncovered that an additional induced collective dipole mode is the key mechanism responsible for achieving outstanding performance in absorption, reaching up to 99%. Analysis of the hierarchical organization reveals that variations in nanoparticle diameter and inter‐unit‐cell distance lead to shifts and broadening of the resonance peaks. It is also demonstrated that the hierarchical nanopatterns are capable of color reproduction with high uniformity and fidelity, serving as hexagonal pixels for high‐resolution color printing. These cribellum‐inspired metamaterials offer a novel approach to multifunctional metamaterial design, presenting aesthetic potential applications in the development of robotics and wearable electronic devices, such as smart skin or surface coatings integrated with energy harvesting functionalities.
more »
« less
Diatom Frustule‐Inspired Metamaterial Absorbers: The Effect of Hierarchical Pattern Arrays
Abstract Diatoms are photosynthetic algae that exist ubiquitously throughout the planet in water environments. Over the preceding decades, the diatom exoskeletons, termed frustules, featuring abundant micro‐ and nanopores, have served as the source material and inspiration for myriad research efforts. In this work, it is demonstrated that frustule‐inspired hierarchical nanostructure designs may be utilized in the fabrication of metamaterial absorbers, thereby realizing a broadband infrared (IR) absorber with excellent performance in terms of absorption. In an effort to investigate the origin of this absorption characteristic, numerical models are developed to study these structures, revealing that the hierarchical organization of the constituent nanoparticulate metamaterial unit cells introduce an additional resonance mode to the device, broadening the absorption spectrum. It is further demonstrated that the resonant peaks shift linearly as a function of inter‐unit‐cell spacing in the metamaterial, which is attributed to the induced collective dipole mode by the nanoparticles. Ultimately, the work herein represents an innovative perspective in terms of the design and fabrication of IR absorbers inspired by naturally occurring biomaterials, offering the potential to lead to advances in metamaterial absorber technology.
more »
« less
- Award ID(s):
- 1762739
- PAR ID:
- 10461534
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 29
- Issue:
- 22
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Wavelength‐selective absorbers (WS‐absorbers) are of interest for various applications, including chemical sensing and light sources. Lithography‐free fabrication of WS‐absorbers can be realized via Tamm plasmon polaritons (TPPs) supported by distributed Bragg reflectors (DBRs) on plasmonic materials. While multifrequency and nearly arbitrary spectra can be realized with TPPs via inverse design algorithms, demanding and thick DBRs are required for high quality‐factors (Q‐factors) and/or multiband TPP‐absorbers, increasing the cost and reducing fabrication error tolerance. Here, high Q‐factor multiband absorption with limited DBR layers (3 layers) is experimentally demonstrated by Tamm hybrid polaritons (THPs) formed by coupling TPPs and Tamm phonon polaritons when modal frequencies are overlapped. Compared to the TPP component, the Q‐factors of THPs are improved twofold, and the angular broadening is also reduced twofold, facilitating applications where narrow‐band and nondispersive WS‐absorbers are needed. Moreover, an open‐source algorithm is developed to inversely design THP‐absorbers consisting of anisotropic media and exemplify that the modal frequencies can be assigned to desirable positions. Furthermore, it is demonstrated that inversely designed THP‐absorbers can realize same spectral resonances with fewer DBR layers than a TPP‐absorber, thus reducing the fabrication complexity and enabling more cost‐effective, lithography‐free, wafer‐scale WS‐absorberss for applications such as free‐space communications and gas sensing.more » « less
-
There is a trade-off between the sparseness of an absorber array and its sound absorption imposed by wave physics. Here, near-perfect absorption (99% absorption) is demonstrated when the spatial period of monopole-dipole resonators is close to one working wavelength (95% of the wavelength). The condition for perfect absorption is to render degenerate monopole-dipole resonators critically coupled. Frequency domain simulations, eigenfrequency simulations, and the coupled mode theory are utilized to demonstrate the acoustic performances and the underlying physics. The sparse-resonator-based sound absorber could greatly benefit noise control with air flow and this study could also have implications for electromagnetic wave absorbers.more » « less
-
The resonant nature and geometric scalability make metamaterials an ideal platform for an enhanced light–matter interaction over a broad frequency range. The mid-infrared (IR) spectral range is of great importance for vibrational spectroscopy of molecules, while IR metamaterials created from lithography-based planar nanostructures have been used to demonstrate enhanced molecular detection. Compared with visible and near-infrared, the relative long wavelengths of IR light make it possible to achieve three-dimensional (3D) IR metamaterials via the state-of-the-art 3D fabrication techniques. Here, we design and fabricate a 3D printed plasmonic metamaterial absorber (MMA), and by performing Fourier-transform IR spectroscopy, we demonstrate that a series of molecular fingerprint vibrations of glycine can be significantly enhanced by the high absorption mode supported by the 3D meta-atoms of the MMA. The observed enhanced IR detection can also be partially attributed to the improved accessibility offered by the 3D architecture of the MMA. In particular, due to capillary forces during the drying process, the microscale 3D printed features lead to selective analyte deposition in high-field regions, which provides another degree of freedom in the design of the 3D printed structures for surface-enhanced IR detection. Our study shows the flexibility of metastructures based on advanced 3D printing technology in tailoring the interaction between IR light and materials on a subwavelength scale.more » « less
-
Chiral metamaterials in the mid-infrared wavelength range have tremendous potential for studying thermal emission manipulation and molecular vibration sensing. Here, we present one type of chiral plasmonic metasurface absorber with high circular dichroism (CD) in absorption of more than 0.56 across the mid-infrared wavelength range of 5–5.5 µm. The demonstrated chiral metasurface absorbers exhibit a maximum chiral absorption of 0.87 and a maximum CD in absorption of around 0.60. By adjusting the geometric parameters of the unit cell structure of the metasurface, the chiral absorption peak can be shifted to different wavelengths. Due to the strong chiroptical response, the thermal analysis of the designed chiral metasurface absorber further shows the large temperature difference between the left-handed and right-handed circularly polarized light. The demonstrated results can be utilized in various applications such as molecular detection, mid-infrared filter, thermal emission, and chiral imaging.more » « less
An official website of the United States government
