skip to main content


Title: Operational optimization of industrial steam systems under uncertainty using data‐ D riven adaptive robust optimization

This article addresses the operational optimization of industrial steam systems under device efficiency uncertainty using a data‐driven adaptive robust optimization approach. A semiempirical model of steam turbine is first developed based on process mechanism and operational data. Uncertain parameters of the proposed steam turbine model are further derived from the historical process data. A robust kernel density estimation method is then used to construct the uncertainty sets for modeling these uncertain parameters. The data‐driven uncertainty sets are incorporated into a two‐stage adaptive robust mixed‐integer linear programming (MILP) framework for operational optimization of steam systems to minimize the total operating cost. Integer variables are introduced to model the on/off decisions of the steam turbines and electrical motors, which are the major energy consumers of the steam system. By applying the affine decision rule, the proposed multilevel optimization model is transformed into its robust counterpart, which is a single‐level MILP problem. The proposed framework is applied to the steam system of a real‐world ethylene plant to demonstrate its applicability. © 2018 American Institute of Chemical EngineersAIChE J, 65: e16500 2019

 
more » « less
NSF-PAR ID:
10461591
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
AIChE Journal
Volume:
65
Issue:
7
ISSN:
0001-1541
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To addresses the design and operations of resilient supply chains under uncertain disruptions, a general framework is proposed for resilient supply chain optimization, including a quantitative measure of resilience and a holistic biobjective two‐stage adaptive robust fractional programming model with decision‐dependent uncertainty set for simultaneously optimizing both the economic objective and the resilience objective of supply chains. The decision‐dependent uncertainty set ensures that the uncertain parameters (e.g., the remaining production capacities of facilities after disruptions) are dependent on first‐stage decisions, including facility location decisions and production capacity decisions. A data‐driven method is used to construct the uncertainty set to fully extract information from historical data. Moreover, the proposed model takes the time delay between disruptions and recovery into consideration. To tackle the computational challenge of solving the resulting multilevel optimization problem, two solution strategies are proposed. The applicability of the proposed approach is illustrated through applications on a location‐transportation problem and on a spatially‐explicit biofuel supply chain optimization problem. © 2018 American Institute of Chemical EngineersAIChE J, 65: 1006–1021, 2019

     
    more » « less
  2. This article aims to leverage the big data in shale gas industry for better decision making in optimal design and operations of shale gas supply chains under uncertainty. We propose a two‐stage distributionally robust optimization model, where uncertainties associated with both the upstream shale well estimated ultimate recovery and downstream market demand are simultaneously considered. In this model, decisions are classified into first‐stage design decisions, which are related to drilling schedule, pipeline installment, and processing plant construction, as well as second‐stage operational decisions associated with shale gas production, processing, transportation, and distribution. A data‐driven approach is applied to construct the ambiguity set based on principal component analysis and first‐order deviation functions. By taking advantage of affine decision rules, a tractable mixed‐integer linear programming formulation can be obtained. The applicability of the proposed modeling framework is demonstrated through a small‐scale illustrative example and a case study of Marcellus shale gas supply chain. Comparisons with alternative optimization models, including the deterministic and stochastic programming counterparts, are investigated as well. © 2018 American Institute of Chemical EngineersAIChE J, 65: 947–963, 2019

     
    more » « less
  3. Summary

    Scenario‐based model predictive control (MPC) methods can mitigate the conservativeness inherent to open‐loop robust MPC. Yet, the scenarios are often generated offline based on worst‐case uncertainty descriptions obtaineda priori, which can in turn limit the improvements in the robust control performance. To this end, this paper presents a learning‐based, adaptive‐scenario‐tree model predictive control approach for uncertain nonlinear systems with time‐varying and/or hard‐to‐model dynamics. Bayesian neural networks (BNNs) are used to learn a state‐ and input‐dependent description of model uncertainty, namely the mismatch between a nominal (physics‐based or data‐driven) model of a system and its actual dynamics. We first present a new approach for training robust BNNs (RBNNs) using probabilistic Lipschitz bounds to provide a less conservative uncertainty quantification. Then, we present an approach to evaluate the credible intervals of RBNN predictions and determine the number of samples required for estimating the credible intervals given a credible level. The performance of RBNNs is evaluated with respect to that of standard BNNs and Gaussian process (GP) as a basis of comparison. The RBNN description of plant‐model mismatch with verified accurate credible intervals is employed to generate adaptive scenarios online for scenario‐based MPC (sMPC). The proposed sMPC approach with adaptive scenario tree can improve the robust control performance with respect to sMPC with a fixed, worst‐case scenario tree and with respect to an adaptive‐scenario‐based MPC (asMPC) using GP regression on a cold atmospheric plasma system. Furthermore, closed‐loop simulation results illustrate that robust model uncertainty learning via RBNNs can enhance the probability of constraint satisfaction of asMPC.

     
    more » « less
  4. The widespread deployment of smart heterogeneous technologies and the growing complexity in our modern society calls for effective coordination of the interdependent lifeline networks. In particular, operation coordination of electric power and water infrastructures is urgently needed as the water system is one of the most energy-intensive networks, an interruption in which may quickly evolve into a dramatic societal concern. The closely-intertwined ecosystem of water and power infrastructures is commonly known as water-energy nexus. This paper develops a novel analytic for uncertainty-aware day-ahead operation optimization of the interconnected power and water systems (PaWS). Joint probabilistic constraint (JPC) programming is employed to capture the uncertainties in wind resources and water demand forecasts. The proposed integrated stochastic model is presented as a non-linear non-convex optimization problem, where the non-linear hydraulic constraints in the water network are linearized using piece-wise linearization technique, and the non-convexity is efficiently tackled with a Boolean solution methodology to convert the proposed model with JPCs to a tractable mixed-integer linear programming (MILP) formulation that can be quickly solved to optimality. The suggested framework is applied to a 15-node commercial-scale water network jointly operated with a power transmission system using a modified IEEE 57-bus test system. The numerical results demonstrate the of the proposed stochastic framework, resulting in cost reduction (13% on average when compared to the traditional setting) and energy saving of the integrated model under different realizations of uncertain renewable energy sources (RESs) and water demand scenarios. Additionally, the scalability of the proposed model is tested on a modified IEEE 118-bus test system connected to five water networks. 
    more » « less
  5. Human development is a threat to biodiversity and conservation organizations (COs) are purchasing land to protect areas for biodiversity preservation. COs have limited budgets and cannot purchase all the land necessary to perfectly preserve biodiversity, and human activities are uncertain, so exact developments are unpredictable. We propose a multistage, robust optimization problem with a data-driven hierarchical-structured uncertainty set which captures the endogenous nature of the binary (0-1) human land use uncertain parameters to help COs choose land parcels to purchase to minimize the worst-case human impact on biodiversity. In the proposed approach, the problem is formulated as a game between COs, which choose parcels to protect with limited budgets, and the human development, which will maximize the loss to the unprotected parcels. We leverage the cellular automata model to simulate the development based on climate data, land characteristics, and human land use data. We use the simulation to build data-driven uncertainty sets. We demonstrate that an equivalent formulation of the problem can be obtained that presents exogenous uncertainty only and where uncertain parameters only appear in the objective. We leverage this reformulation to propose a conservative $K$-adaptability reformulation of our problem that can be solved routinely by off-the-shelf solvers like Gurobi or CPLEX. The numerical results based on real data show that the proposed method reduces conservation loss by 19.46% on average compared to standard approaches used in practice for biodiversity conservation. 
    more » « less