skip to main content


Title: Uncertainty-Informed Operation Coordination in a Water-Energy Nexus
The widespread deployment of smart heterogeneous technologies and the growing complexity in our modern society calls for effective coordination of the interdependent lifeline networks. In particular, operation coordination of electric power and water infrastructures is urgently needed as the water system is one of the most energy-intensive networks, an interruption in which may quickly evolve into a dramatic societal concern. The closely-intertwined ecosystem of water and power infrastructures is commonly known as water-energy nexus. This paper develops a novel analytic for uncertainty-aware day-ahead operation optimization of the interconnected power and water systems (PaWS). Joint probabilistic constraint (JPC) programming is employed to capture the uncertainties in wind resources and water demand forecasts. The proposed integrated stochastic model is presented as a non-linear non-convex optimization problem, where the non-linear hydraulic constraints in the water network are linearized using piece-wise linearization technique, and the non-convexity is efficiently tackled with a Boolean solution methodology to convert the proposed model with JPCs to a tractable mixed-integer linear programming (MILP) formulation that can be quickly solved to optimality. The suggested framework is applied to a 15-node commercial-scale water network jointly operated with a power transmission system using a modified IEEE 57-bus test system. The numerical results demonstrate the of the proposed stochastic framework, resulting in cost reduction (13% on average when compared to the traditional setting) and energy saving of the integrated model under different realizations of uncertain renewable energy sources (RESs) and water demand scenarios. Additionally, the scalability of the proposed model is tested on a modified IEEE 118-bus test system connected to five water networks.  more » « less
Award ID(s):
1951847
NSF-PAR ID:
10377763
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Transactions on Industrial Informatics
ISSN:
1551-3203
Page Range / eLocation ID:
1 to 11
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Despite the increasing level of renewable power generation in power grids, fossil fuel power plants still have a significant role in producing carbon emissions. The integration of carbon capturing and storing systems to the conventional power plants can significantly reduce the spread of carbon emissions. In this paper, the economic-emission dispatch of combined renewable and coal power plants equipped with carbon capture systems is addressed in a multi-objective optimization framework. The power systems flexibility is enhanced by hydropower plants, pumped hydro storage, and demand response program. The wind generation and load consumption uncertainties are modeled using stochastic programming. The DC power flow model is implemented on a modified IEEE 24-bus test system. Solving the problem resulted in an optimal Pareto frontier, while the fuzzy decision-making method found the best solution. The sensitivity of the objective functions concerning the generation-side is also investigated. 
    more » « less
  2. The dynamic response of power grids to small transient events or persistent stochastic disturbances influences their stable operation. This paper studies the effect of topology on the linear time-invariant dynamics of power networks. For a variety of stability metrics, a unified framework based on the H2 -norm of the system is presented. The proposed framework assesses the robustness of power grids to small disturbances and is used to study the optimal placement of new lines on existing networks as well as the design of radial (tree) and meshed (loopy) topologies for new networks. Although the design task can be posed as a mixed-integer semidefinite program (MI-SDP), its performance does not scale well with network size. Using McCormick relaxation, the topology design problem can be reformulated as a mixed-integer linear program (MILP). To improve the computation time, graphical properties are exploited to provide tighter bounds on the continuous optimization variables. Numerical tests on the IEEE 39-bus feeder demonstrate the efficacy of the optimal topology in minimizing disturbances. 
    more » « less
  3. null (Ed.)
    This paper presents a multi-objective (MO) optimization for economic/emission dispatch (EED) problem incorporating hydrothermal plants, wind power generation, energy storage systems (ESSs) and responsive loads. The uncertain behavior of wind turbines and electric loads is modeled by scenarios. Stochastic programming is proposed to achieve the expected cost and emission production. Moreover, the carbon capture systems are considered to lower the level of carbon emission produced by conventional thermal units. The proposed optimization problem is tested on the IEEE 24-bus case study using DC power flow calculation. The optimal Pareto frontier is obtained, and a fuzzy decision-making tool determined the best solution among obtained Pareto points. The problem is modeled as mixed-integer non-linear programming in the General Algebraic Modelling System (GAMS) and solved using DICOPT solver. 
    more » « less
  4. This article proposes a new framework for the substation demand reduction and power loss minimization in distribution networks by implementing conservation voltage reduction (CVR) strategy. The proposed framework coordinates Battery Energy Storage Systems (BESS), Smart PV inverters and voltage control devices -including OLTC and voltage regulators- so that the substation demand and network power loss are reduced while the service voltage range meets the IEEE 1547 standard (120-114 V). The suggested CVR strategy is applied to the IEEE 34-bus case study system consisting of two PV generations and BESS. The smart PV inverters are controlled based on the combined Volt/VArVolt/Watt (VVW) characteristics scheme. Also, BESS is charged and discharged with regard to the time and peaks have control modes, respectively. The Arithmetic Optimization Algorithm (AOA) is implemented in MATLAB scripts for solving the optimization problem. Power flow studies are carried out using OpenDSS software. Results reveal that the new framework can achieve higher substation demand reduction considering the concurrent control of PVs and BESS. 
    more » « less
  5. null (Ed.)
    The widespread presence of contingent generation, when coupled with the resulting volatility of the chronological net-load (i.e., the difference between stochastic generation and uncertain load) in today's modern electricity markets, engender the significant operational risks of an uncertain sufficiency of flexible energy capacity. In this article, we address several operational flexibility concerns that originate from the increase in generation variability captured within a security-constrained unit commitment (SCUC) formulation in smart grids. To quantitatively assess the power grid operational flexibility capacity, we first introduce two reference operation strategies based on a two-stage robust SCUC, one through a fixed and the other via an adjustable uncertainty set, for which the state-of-the-art techniques may not be always feasible, efficient, and practical. To address these concerns and to account for the effects of the uncertainty cost resulting from dispatch limitations of flexible resources, a new framework centered on the adjustable penetration of stochastic generation is proposed. Our hypothesis is that if the SCUC is scheduled with an appropriate dispatch level of stochastic generation, the system uncertainty cost will decrease, and subsequently, the system's ability to accommodate additional uncertainty will improve. Numerical simulations on a modified IEEE 73-bus test system verify the efficiency of the suggested assessment techniques. 
    more » « less