Abstract Wildfires may increase soil emissions of trace nitrogen (N) gases like nitric oxide (NO) and nitrous oxide (N2O) by changing soil physicochemical conditions and altering microbial processes like nitrification and denitrification. When 34 studies were synthesized, we found a significant increase in both NO and N2O emissions up to 1 year post-fire across studies spanning ecosystems globally. However, when fluxes were separated by ecosystem type, we found that individual ecosystem types responded uniquely to fire. Forest soils tended to emit more N2O after fire, but there was no significant effect on NO. Shrubland soils showed significant increases in both NO and N2O emissions after fires; often with extremely large but short-lived NO pulses occurring immediately after fire. Grassland NO emissions increased after fire, but the size of this effect was small relative to shrublands. N2O emissions from burned grasslands were highly variable with no significant effect. To better understand the variation in responses to fire across global ecosystems, more consistent measurements of variables recognized as important controls on soil fluxes of NO and N2O (e.g., N cycling rates, soil water content, pH, and substrate availability) are needed across studies. We also suggest that fire-specific elements like burn severity, microbial community succession, and the presence of char be considered by future studies. Our synthesis suggests that fires can exacerbate ecosystem N loss long after they burn, increasing soil emissions of NO and N2O with implications for ecosystem N loss, climate, and regional air quality as wildfires increase globally.
more »
« less
Accounting for nature's intermittency and growth while mitigating NO 2 emissions by technoecological synergistic design—Application to a chloralkali process
By including ecosystems in process design, it becomes possible to develop synergies between technological and ecological systems to establish islands of environmental sustainability. Such an approach can also ensure that human activities do not degrade ecosystems—the very systems that are essential for our sustainability. This work evaluates the idea of including ecosystems as unit operations in process design [1] while accounting for the intermittency and growth of ecological systems. The technology of selective catalytic reduction (SCR) and a forest ecosystem are both capable of mitigating nitrogen dioxide (NO2) emissions and are designed to support a chloralkali process near Galveston, Texas. The cost of the forest ecosystem taking up NO2is found to be one‐fourth of the cost of the SCR. However, as the capacity of vegetation to take up emissions varies with seasons, the chloralkali process needs to adjust its manufacturing rate accordingly. The result of such adaptation to local ecosystems can be manufacturing with net zero emissions and a step toward environmental sustainability. This study demonstrates the need for further research to address the practical and theoretical aspects of industry and ecosystems to establish mutually beneficial relationships that are economically, ecologically, and societally viable.
more »
« less
- Award ID(s):
- 1804943
- PAR ID:
- 10461619
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Advanced Manufacturing and Processing
- Volume:
- 1
- Issue:
- 1-2
- ISSN:
- 2637-403X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Climate change is altering precipitation regimes that control nitrogen (N) cycling in terrestrial ecosystems. In ecosystems exposed to frequent drought, N can accumulate in soils as they dry, stimulating the emission of both nitric oxide (NO; an air pollutant at high concentrations) and nitrous oxide (N2O; a powerful greenhouse gas) when the dry soils wet up. Because changes in both N availability and soil moisture can alter the capacity of nitrifying organisms such as ammonia‐oxidizing bacteria (AOB) and archaea (AOA) to process N and emit N gases, predicting whether shifts in precipitation may alter NO and N2O emissions requires understanding how both AOA and AOB may respond. Thus, we ask: How does altering summer and winter precipitation affect nitrifier‐derived N trace gas emissions in a dryland ecosystem? To answer this question, we manipulated summer and winter precipitation and measured AOA‐ and AOB‐derived N trace gas emissions, AOA and AOB abundance, and soil N concentrations. We found that excluding summer precipitation increased AOB‐derived NO emissions, consistent with the increase in soil N availability, and that increasing summer precipitation amount promoted AOB activity. Excluding precipitation in the winter (the most extreme water limitation we imposed) did not alter nitrifier‐derived NO emissions despite N accumulating in soils. Instead, nitrate that accumulated under drought correlated with high N2O emission via denitrification upon wetting dry soils. Increases in the timing and intensity of precipitation that are forecasted under climate change may, therefore, influence the emission of N gases according to the magnitude and season during which the changes occur.more » « less
-
null (Ed.)Abstract Context Most protected areas are managed based on objectives related to scientific ecological knowledge of species and ecosystems. However, a core principle of sustainability science is that understanding and including local ecological knowledge, perceptions of ecosystem service provision and landscape vulnerability will improve sustainability and resilience of social-ecological systems. Here, we take up these assumptions in the context of protected areas to provide insight on the effectiveness of nature protection goals, particularly in highly human-influenced landscapes. Objectives We examined how residents’ ecological knowledge systems, comprised of both local and scientific, mediated the relationship between their characteristics and a set of variables that represented perceptions of ecosystem services, landscape change, human-nature relationships, and impacts. Methods We administered a face-to-face survey to local residents in the Sierra de Guadarrama protected areas, Spain. We used bi- and multi-variate analysis, including partial least squares path modeling to test our hypotheses. Results Ecological knowledge systems were highly correlated and were instrumental in predicting perceptions of water-related ecosystem services, landscape change, increasing outdoors activities, and human-nature relationships. Engagement with nature, socio-demographics, trip characteristics, and a rural–urban gradient explained a high degree of variation in ecological knowledge. Bundles of perceived ecosystem services and impacts, in relation to ecological knowledge, emerged as social representation on how residents relate to, understand, and perceive landscapes. Conclusions Our findings provide insight into the interactions between ecological knowledge systems and their role in shaping perceptions of local communities about protected areas. These results are expected to inform protected area management and landscape sustainability.more » « less
-
Climate zones play a significant role in shaping the forest ecosystems located within them by influencing multiple ecological processes, including growth, disturbances, and species interactions. Therefore, delineation of current and future climate zones is essential to establish a framework for understanding and predicting shifts in forest ecosystems. In this study, we developed and applied an efficient approach to delineate regional climate zones in the northeastern United States and maritime Canada, aiming to characterize potential shifts in climate zones and discuss associated changes in forest ecosystems. The approach comprised five steps: climate data dimensionality reduction, sampling scenario design, cluster generation, climate zone delineation, and zone shift prediction. The climate zones in the study area were delineated into four different orders, with increasing subzone resolutions of 3, 9, 15, and 21. Furthermore, projected climate normals under Shared Socioeconomic Pathways 4.5 and 8.5 scenarios were used to predict the shifts in climate zones until 2100. Our findings indicate that climate zones characterized by higher temperatures and lower precipitation are expected to become more prevalent, potentially becoming the dominant climate condition across the entire region. These changes are likely to alter regional forest composition, structure, and productivity. In short, such shifts in climate underscore the significant impact of environmental change on forest ecosystem dynamics and carbon sequestration potential.more » « less
-
Abstract Growing urban populations and deteriorating infrastructure are driving unprecedented demands for concrete, a material for which there is no alternative that can meet its functional capacity. The production of concrete, more particularly the hydraulic cement that glues the material together, is one of the world’s largest sources of greenhouse gas (GHG) emissions. While this is a well-studied source of emissions, the consequences of efficient structural design decisions on mitigating these emissions are not yet well known. Here, we show that a combination of manufacturing and engineering decisions have the potential to reduce over 76% of the GHG emissions from cement and concrete production, equivalent to 3.6 Gt CO2-eq lower emissions in 2100. The studied methods similarly result in more efficient utilization of resources by lowering cement demand by up to 65%, leading to an expected reduction in all other environmental burdens. These findings show that the flexibility within current concrete design approaches can contribute to climate mitigation without requiring heavy capital investment in alternative manufacturing methods or alternative materials.more » « less
An official website of the United States government
