skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pin-hole free MAPb0.75 Sn0.25(I0.5Br0.5)3 films spin casted without anti- solvent by adding MAAc additive to Perovskite ink
To start the crystallization of the tin (Sn) based perovskite materials, anti-solvent treatment is a useful technique. But the use of anti-solvents increases the complexity of the deposition process thus hinders the applicability in mass production processes. Here we have developed an anti-solvent free MAPb0.75Sn0.25(I0.50Br0.50)3 perovskite thin film deposition method based on a one step spin coating process. Addition of 0 - 100 mol% of methylammonium acetate (MAAc) to the precursor ink allows for the deposition of continuous films. Films casted from ink with less than 60 mol% MAAc show pinholes and are rough. A decent crystalline and pin-hole free perovskite thin film can be obtained from 60 or more mol% MAAc additive. These results are confirmed by XRD, AFM and SEM measurements. MAPb0.75Sn0.25(I0.50Br0.50)3 has a wide bandgap and is currently being considered for applications in tandem solar cells and under water solar cells.  more » « less
Award ID(s):
1906492
PAR ID:
10461781
Author(s) / Creator(s):
Date Published:
Journal Name:
Renewable energy power quality journal
Volume:
20
ISSN:
2172-038X
Page Range / eLocation ID:
274-278
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Li, Gang; Nguyen, Thuc-Quyen; Nogueira, Ana Flávia; Rand, Barry P.; Moons, Ellen; Stingelin, Natalie (Ed.)
    Anti-solvent-free one-step deposition of perovskite thin film shows promising potential for application in slot-die or roll-to-roll mass fabrication processes of perovskite solar cells. The continuous coverage was confirmed by PV response of devices made using the on-step deposition process. In this work, we have developed a process to deposit MAPB0.75Sn0.25(I0.5Br0.5)3 perovskite thin films without anti-solvent adding MAAc to the ink. By varying the Br content of the perovskite precursor, we were able to tune the bandpap. Fabricated solar cells with the structure ITO/CuI/MAPb0.75Sn0.25(I0.5Br0.5)3/C60/BCP/Al with PCE of 4.59% show the parth of the fabrication process of antisolvent-free tin-lead-based solar cells. 
    more » « less
  2. The organic metal halide perovskite material is capable of high throughput manufacturing via traditional deposition processes used in roll-to-roll, yet thermal annealing post deposition may require long ovens. We report rapid annealed perovskite thin films using intense pulsed light (IPL) to initiate a radiative thermal response that is enabled by an alkyl halide additive that collectively improves the performance of a device processed in an ambient environment from a baseline of 10 to 16.5% efficiency. Previous reports on CH 3 NH 3 PbI 3 perovskite films using IPL processing achieved functional devices in milli-second time scales and are promising for high throughput manufacturing processes under ambient conditions. In this study, we found that the addition of diiodomethane (CH 2 I 2 ) as an additive to the methylammonium iodide (MAI)/lead iodide (PbI 2 ) precursor ink chemistry and subsequent IPL thermal annealing are inter-dependent. The concentration of CH 2 I 2 and IPL processing parameters have a direct effect on the surface morphology of the films and performance within a perovskite solar cell (PSC). The CH 2 I 2 dissociates under exposure to ultraviolet (UV) radiation from the IPL source liberating iodine ions in the film, influencing the perovskite formation and reducing the defect states. We anticipate that these results can be utilized to further develop different ink formulations using alkyl halides for the IPL technique to improve the performance of perovskite solar cells processed in ambient conditions. 
    more » « less
  3. Abstract The performance of large‐area perovskite solar cells (PSCs) has been assessed for typical compositions, such as methylammonium lead iodide (MAPbI3), using a blade coater, slot‐die coater, solution shearing, ink‐jet printing, and thermal evaporation. However, the fabrication of large‐area all‐inorganic perovskite films is not well developed. This study develops, for the first time, an eco‐friendly solvent engineered all‐inorganic perovskite ink of dimethyl sulfoxide (DMSO) as a main solvent with the addition of acetonitrile (ACN), 2‐methoxyethanol (2‐ME), or a mixture of ACN and 2‐ME to fabricate large‐area CsPbI2.77Br0.23films with slot‐die coater at low temperatures (40–50 °C). The perovskite phase, morphology, defect density, and optoelectrical properties of prepared with different solvent ratios are thoroughly examined and they are correlated with their respective colloidal size distribution and solar cell performance. The optimized slot‐die‐coated CsPbI2.77Br0.23perovskite film, which is prepared from the eco‐friendly binary solvents dimethyl sulfoxide:acetonitrile (0.8:0.2 v/v), demonstrates an impressive power conversion efficiency (PCE) of 19.05%. Moreover, the device maintains ≈91% of its original PCE after 1 month at 20% relative humidity in the dark. It is believed that this study will accelerate the reliable manufacturing of perovskite devices. 
    more » « less
  4. Abstract A combination of novel techniques such as a solvent‐free thin‐film deposition, perovskite patterning, and10B back‐fill technique enables the high neutron detection efficiency in a perovskite‐based microstructured thermal neutron detector. High‐efficiency cesium lead bromide (CsPbBr3) perovskite‐based microstructured detectors are demonstrated here. Trenches up to 10 µm deep are etched into the CsPbBr3thin films using a novel dry etching process involving a combination of HBr and Ar plasma. The microstructured diodes are then backfilled with isotopically enriched boron as neutron conversion material via a sedimentation process to preserve the perovskite integrity. The fabricated microstructured CsPbBr3thermal neutron detectors show an efficiency of 4.3%. This represents >1.2x efficiency improvement over planar silicon (3.5%) and >2x efficiency improvement over planar CsPbBr3(2.1%) detectors, respectively. More importantly, gamma‐ray discrimination of 107is measured in CsPbBr3‐based microstructured neutron detectors. 
    more » « less
  5. In recent years, a growing interest in the development of new energy harvesting technologies based on earth-abundant, environmentally-friendly semiconductors, has led to the re-discovery of hitherto overlooked materials. Among them, Ag-based chalcohalides stand out for their abundancy and low-toxicity, as well as the crystal structure analogous to perovskite, albeit with cations in place of anions and vice-versa (i.e. anti-perovskite). Until now, inorganic anti-perovskites have generally been studied as solid-state electrolytes. Indeed, Ag3SI was identified in the 1960s as a superionic conductor. On the other hand, theorical calculations have demonstrated bandgaps in the visible range, suggesting that they could be suitable for PV applications. However, there is little published information on their potential as energy harvesting materials and so far, thin films have been prepared by solid-state reactions or physical vapor deposition techniques at high temperature and/or vacuum conditions, which limits their commercial viability owing to costly, non-scalable processes. In this work, we present a new procedure to synthesize Ag-based chalcohalides by a low-temperature solution-based methodology, using an thiol-amine reactive solvent system to dissolve Ag2S and AgX (X = Br, I) precursors, followed by spin coating deposition to obtain polycrystalline films. Through this process, it has been possible to synthesize Ag3S(IxBr1−x) (x = 0–1) films for the first time, which have been characterized, demonstrating the formation of the anti-perovskite phase and a linear correlation between structural parameters and composition. Optical characterization shows bandgap ranging from 0.9 eV (Ag3SI) to 1.0 eV (Ag3SBr), with a bowing effect for the intermediate solid solutions. First solar cells prototypes demonstrate photo-response and promising electrical characteristics. 
    more » « less