skip to main content


Title: Fabricate anti-solvent free tin-lead based perovskite solar cells with MAAc additives
Anti-solvent-free one-step deposition of perovskite thin film shows promising potential for application in slot-die or roll-to-roll mass fabrication processes of perovskite solar cells. The continuous coverage was confirmed by PV response of devices made using the on-step deposition process. In this work, we have developed a process to deposit MAPB0.75Sn0.25(I0.5Br0.5)3 perovskite thin films without anti-solvent adding MAAc to the ink. By varying the Br content of the perovskite precursor, we were able to tune the bandpap. Fabricated solar cells with the structure ITO/CuI/MAPb0.75Sn0.25(I0.5Br0.5)3/C60/BCP/Al with PCE of 4.59% show the parth of the fabrication process of antisolvent-free tin-lead-based solar cells.  more » « less
Award ID(s):
1906492
NSF-PAR ID:
10461788
Author(s) / Creator(s):
Editor(s):
Li, Gang; Nguyen, Thuc-Quyen; Nogueira, Ana Flávia; Rand, Barry P.; Moons, Ellen; Stingelin, Natalie
Date Published:
Journal Name:
Organic, Hybrid, and Perovskite Photovoltaics XXIII, 1220905
Volume:
12209
Page Range / eLocation ID:
53
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To start the crystallization of the tin (Sn) based perovskite materials, anti-solvent treatment is a useful technique. But the use of anti-solvents increases the complexity of the deposition process thus hinders the applicability in mass production processes. Here we have developed an anti-solvent free MAPb0.75Sn0.25(I0.50Br0.50)3 perovskite thin film deposition method based on a one step spin coating process. Addition of 0 - 100 mol% of methylammonium acetate (MAAc) to the precursor ink allows for the deposition of continuous films. Films casted from ink with less than 60 mol% MAAc show pinholes and are rough. A decent crystalline and pin-hole free perovskite thin film can be obtained from 60 or more mol% MAAc additive. These results are confirmed by XRD, AFM and SEM measurements. MAPb0.75Sn0.25(I0.50Br0.50)3 has a wide bandgap and is currently being considered for applications in tandem solar cells and under water solar cells. 
    more » « less
  2.  
    more » « less
  3. Triple cation Cs/methylammonium (MA)/formamidinium (FA) and double halide Br/I lead perovskites improved the stability and efficiency of perovskite solar cells (PVSCs). However, their effects on alloyed Pb–Sn perovskites are unexplored. In this work, perovskite thin films with the composition Cs x (MA 0.17 FA 0.83 ) 1−x Pb 1−y Sn y (I 0.83 Br 0.17 ) 3 are synthesized utilizing a one-step solution process plus an anti-solvent wash technique and deployed in PVSCs with an inverted architecture. All films show a cubic crystal structure, demonstrating that compositional tuning of both the tolerance factor and crystallization rate allows for dense, single phase formation. The band gaps, affected by both lattice constriction and octahedral tilting, show opposite trends in Pb-rich or Sn-rich perovskites with the increase of Cs for fixed Sn compositions. The Cs 0.05 (MA 0.17 FA 0.83 ) 0.95 Pb 0.25 Sn 0.75 (I 0.83 Br 0.17 ) 3 PVSCs achieve a power conversion efficiency (PCE) of 11.05%, a record for any PVSC containing 75% Sn perovskites, and the Cs 0.10 (MA 0.17 FA 0.83 ) 0.90 Pb 0.75 Sn 0.25 (I 0.83 Br 0.17 ) 3 PVSCs reach a record PCE of 15.78%. Moreover, the triple cation and double halide alloyed Pb–Sn perovskites exhibit improved device stability under inert and ambient conditions. This study, which illustrates the impact of cation and halide tuning on alloyed Pb–Sn perovskites, can be used to further eliminate Pb and improve device performance of high Sn PVSCs and other optoelectronic devices. 
    more » « less
  4. Abstract

    Perovskite solar cells increasingly feature mixed‐halide mixed‐cation compounds (FA1−xyMAxCsyPbI3−zBrz) as photovoltaic absorbers, as they enable easier processing and improved stability. Here, the underlying reasons for ease of processing are revealed. It is found that halide and cation engineering leads to a systematic widening of the anti‐solvent processing window for the fabrication of high‐quality films and efficient solar cells. This window widens from seconds, in the case of single cation/halide systems (e.g., MAPbI3, FAPbI3, and FAPbBr3), to several minutes for mixed systems. In situ X‐ray diffraction studies reveal that the processing window is closely related to the crystallization of the disordered sol–gel and to the number of crystalline byproducts; the processing window therefore depends directly on the precise cation/halide composition. Moreover, anti‐solvent dripping is shown to promote the desired perovskite phase with careful formulation. The processing window of perovskite solar cells, as defined by the latest time the anti‐solvent drip yields efficient solar cells, broadened with the increasing complexity of cation/halide content. This behavior is ascribed to kinetic stabilization of sol–gel state through cation/halide engineering. This provides guidelines for designing new formulations, aimed at formation of the perovskite phase, ultimately resulting in high‐efficiency perovskite solar cells produced with ease and with high reproducibility.

     
    more » « less
  5. The organic metal halide perovskite material is capable of high throughput manufacturing via traditional deposition processes used in roll-to-roll, yet thermal annealing post deposition may require long ovens. We report rapid annealed perovskite thin films using intense pulsed light (IPL) to initiate a radiative thermal response that is enabled by an alkyl halide additive that collectively improves the performance of a device processed in an ambient environment from a baseline of 10 to 16.5% efficiency. Previous reports on CH 3 NH 3 PbI 3 perovskite films using IPL processing achieved functional devices in milli-second time scales and are promising for high throughput manufacturing processes under ambient conditions. In this study, we found that the addition of diiodomethane (CH 2 I 2 ) as an additive to the methylammonium iodide (MAI)/lead iodide (PbI 2 ) precursor ink chemistry and subsequent IPL thermal annealing are inter-dependent. The concentration of CH 2 I 2 and IPL processing parameters have a direct effect on the surface morphology of the films and performance within a perovskite solar cell (PSC). The CH 2 I 2 dissociates under exposure to ultraviolet (UV) radiation from the IPL source liberating iodine ions in the film, influencing the perovskite formation and reducing the defect states. We anticipate that these results can be utilized to further develop different ink formulations using alkyl halides for the IPL technique to improve the performance of perovskite solar cells processed in ambient conditions. 
    more » « less