skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Toward Continuous‐Flow Hyperpolarisation of Metabolites via Heterogenous Catalysis, Side‐Arm‐Hydrogenation, and Membrane Dissolution of Parahydrogen
Abstract Side‐arm hydrogenation (SAH) by homogeneous catalysis has extended the reach of the parahydrogen enhanced NMR technique to key metabolites such as pyruvate. However, homogeneous hydrogenation requires rapid separation of the dissolved catalyst and purification of the hyperpolarised species with a purity sufficient for safe in‐vivo use. An alternate approach is to employ heterogeneous hydrogenation in a continuous‐flow reactor, where separation from the solid catalysts is straightforward. Using a TiO2‐nanorod supported Rh catalyst, we demonstrate continuous‐flow parahydrogen enhanced NMR by heterogeneous hydrogenation of a model SAH precursor, propargyl acetate, at a flow rate of 1.5 mL/min. Parahydrogen gas was introduced into the flowing solution phase using a novel tube‐in‐tube membrane dissolution device. Without much optimization, proton NMR signal enhancements of up to 297 (relative to the thermal equilibrium signals) at 9.4 Tesla were shown to be feasible on allyl‐acetate at a continuous total yield of 33 %. The results are compared to those obtained with the standard batch‐mode technique of parahydrogen bubbling through a suspension of the same catalyst.  more » « less
Award ID(s):
1933723 1808239
PAR ID:
10226035
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemPhysChem
Volume:
22
Issue:
9
ISSN:
1439-4235
Page Range / eLocation ID:
p. 822-827
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Magnetic resonance imaging of [1‐13C]hyperpolarized carboxylates (most notably, [1‐13C]pyruvate) allows one to visualize abnormal metabolism in tumors and other pathologies. Herein, we investigate the efficiency of1H and13C hyperpolarization of acetate and pyruvate esters with ethyl, propyl and allyl alcoholic moieties using heterogeneous hydrogenation of corresponding vinyl, allyl and propargyl precursors in isotopically unlabeled and 1‐13C‐enriched forms with parahydrogen over Rh/TiO2catalysts in methanol‐d4and in D2O. The maximum obtained1H polarization was 0.6±0.2 % (for propyl acetate in CD3OD), while the highest13C polarization was 0.10±0.03 % (for ethyl acetate in CD3OD). Hyperpolarization of acetate esters surpassed that of pyruvates, while esters with a triple carbon‐carbon bond in unsaturated alcoholic moiety were less efficient as parahydrogen‐induced polarization precursors than esters with a double bond. Among the compounds studied, the maximum1H and13C NMR signal intensities were observed for propyl acetate. Ethyl acetate yielded slightly less intense NMR signals which were dramatically greater than those of other esters under study. 
    more » « less
  2. Abstract Oxide supports with well‐defined shapes enable investigations on the effects of surface structure on metal–support interactions and correlations to catalytic activity and selectivity. Here, a modified atomic layer deposition technique was developed to achieve ultra‐low loadings (8–16 ppm) of Pt on shaped ceria nanocrystals. Using octahedra and cubes, which expose exclusively (111) and (100) surfaces, respectively, the effect of CeO2surface facet on Pt‐CeO2interactions under reducing conditions was revealed. Strong electronic interactions result in electron‐deficient Pt species on CeO2(111) after reduction, which increased the stability of the atomically dispersed Pt. This afforded significantly higher NMR signal enhancement in parahydrogen‐induced polarization experiments compared with the electron‐rich platinum on CeO2(100), and a factor of two higher pairwise selectivity (6.1 %) in the hydrogenation of propene than any previously reported monometallic heterogeneous Pt catalyst. 
    more » « less
  3. Abstract Herein, we demonstrate “direct”13C hyperpolarization of13C‐acetate via signal amplification by reversible exchange (SABRE). The standard SABRE homogeneous catalyst [Ir‐IMes; [IrCl(COD)(IMes)], (IMes=1,3‐bis(2,4,6‐trimethylphenyl), imidazole‐2‐ylidene; COD=cyclooctadiene)] was first activated in the presence of an auxiliary substrate (pyridine) in alcohol. Following addition of sodium 1‐13C‐acetate, parahydrogen bubbling within a microtesla magnetic field (i.e. under conditions of SABRE in shield enables alignment transfer to heteronuclei, SABRE‐SHEATH) resulted in positive enhancements of up to ≈100‐fold in the13C NMR signal compared to thermal equilibrium at 9.4 T. The present results are consistent with a mechanism of “direct” transfer of spin order from parahydrogen to13C spins of acetate weakly bound to the catalyst, under conditions of fast exchange with respect to the13C acetate resonance, but we find that relaxation dynamics at microtesla fields alter the optimal matching from the traditional SABRE‐SHEATH picture. Further development of this approach could lead to new ways to rapidly, cheaply, and simply hyperpolarize a broad range of substrates (e.g. metabolites with carboxyl groups) for various applications, including biomedical NMR and MRI of cellular and in vivo metabolism. 
    more » « less
  4. Abstract Parahydrogen-induced polarization of13C nuclei by side-arm hydrogenation (PHIP-SAH) for [1-13C]acetate and [1-13C]pyruvate esters with application of PH-INEPT-type pulse sequences for1H to13C polarization transfer is reported, and its efficiency is compared with that of polarization transfer based on magnetic field cycling (MFC). The pulse-sequence transfer approach may have its merits in some applications because the entire hyperpolarization procedure is implemented directly in an NMR or MRI instrument, whereas MFC requires a controlled field variation at low magnetic fields. Optimization of the PH-INEPT-type transfer sequences resulted in13C polarization values of 0.66 ± 0.04% and 0.19 ± 0.02% for allyl [1-13C]pyruvate and ethyl [1-13C]acetate, respectively, which is lower than the corresponding polarization levels obtained with MFC for1H to13C polarization transfer (3.95 ± 0.05% and 0.65 ± 0.05% for allyl [1-13C]pyruvate and ethyl [1-13C]acetate, respectively). Nevertheless, a significant13C NMR signal enhancement with respect to thermal polarization allowed us to perform13C MR imaging of both biologically relevant hyperpolarized molecules which can be used to produce useful contrast agents for the in vivo imaging applications. 
    more » « less
  5. Parahydrogen-induced polarization (PHIP) is a powerful technique for studying hydrogenation reactions in gas and liquid phases. Pairwise addition of parahydrogen to the hydrogenation substrate imparts nuclear spin order to reaction products, manifested as enhanced 1 H NMR signals from the nascent proton sites. Nanoscale metal catalysts immobilized on supports comprise a promising class of catalysts for producing PHIP effects; however, on such catalysts the percentage of substrates undergoing the pairwise addition route—a necessary condition for observing PHIP—is usually low. In this paper, we present a systematic study of several metal catalysts (Rh, Pt, Pd, and Ir) supported on TiO 2 in liquid-phase hydrogenation of different prototypical phenylalkynes (phenylacetylene, 1-phenyl-1-propyne, and 3-phenyl-1-propyne) with parahydrogen. Catalyst activity and selectivity were found to be affected by both the nature of the active metal and the percentage of metal loading. It was demonstrated that the optimal catalyst for production of hyperpolarized products is Rh/TiO 2 with 4 wt% metal loading, whereas Pd/TiO 2 provided the greatest selectivity for semihydrogenation of phenylalkynes. In a study of liquid-phase hydrogenation reaction kinetics, it was shown that reaction order with respect to hydrogen is nearly the same for pairwise and non-pairwise H 2 addition—consistent with a similar nature of the catalytically active sites for these reaction pathways. 
    more » « less