Quantum Computing (QC) has gained immense popularity as a potential solution to deal with the ever-increasing size of data and associated challenges leveraging the concept of quantum random access memory (QRAM). QC promises quadratic or exponential increases in computational time with quantum parallelism and thus offer a huge leap forward in the computation of Machine Learning algorithms. This paper analyzes speed up performance of QC when applied to machine learning algorithms, known as Quantum Machine Learning (QML). We applied QML methods such as Quantum Support Vector Machine (QSVM), and Quantum Neural Network (QNN) to detect Software Supply Chain (SSC) attacks. Due to the access limitations of real quantum computers, the QML methods were implemented on open-source quantum simulators such as IBM Qiskit and TensorFlow Quantum. We evaluated the performance of QML in terms of processing speed and accuracy and finally, compared with its classical counterparts. Interestingly, the experimental results differ to the speed up promises of QC by demonstrating higher computational time and lower accuracy in comparison to the classical approaches for SSC attacks.
more »
« less
Quantum Random Access Memory for Dummies
Quantum Random Access Memory (QRAM) has the potential to revolutionize the area of quantum computing. QRAM uses quantum computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies in terms of their structure and workings, circuit width and depth, unique qualities, practical implementation, and drawbacks. In general, with the exception of trainable machine learning-based QRAMs, we observe that QRAM has exponential depth/width requirements in terms of the number of qubits/qudits and that most QRAM implementations are practical for superconducting and trapped-ion qubit systems.
more »
« less
- PAR ID:
- 10461843
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 23
- Issue:
- 17
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 7462
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Our study evaluates the limitations and potentials of Quantum Random Access Memory (QRAM) within the principles of quantum physics and relativity. QRAM is crucial for advancing quantum algorithms in fields like linear algebra and machine learning, purported to efficiently manage large data sets with$${{{\mathcal{O}}}}(\log N)$$ circuit depth. However, its scalability is questioned when considering the relativistic constraints on qubits interacting locally. Utilizing relativistic quantum field theory and Lieb–Robinson bounds, we delve into the causality-based limits of QRAM. Our investigation introduces a feasible QRAM model in hybrid quantum acoustic systems, capable of supporting a significant number of logical qubits across different dimensions-up to ~107in 1D, ~1015to ~1020in 2D, and ~1024in 3D, within practical operation parameters. This analysis suggests that relativistic causality principles could universally influence quantum computing hardware, underscoring the need for innovative quantum memory solutions to navigate these foundational barriers, thereby enhancing future quantum computing endeavors in data science.more » « less
-
A quantum version of data centers might be significant in the quantum era. In this paper, we introduce Quantum Data Center (QDC) [1], a quantum version of existing classical data centers, with a specific emphasis on combining Quantum Random Access Memory (QRAM) and quantum networks. We argue that QDC will provide significant benefits to customers in terms of efficiency, security, and precision, and will be helpful for quantum computing, communication, and sensing. We investigate potential scientific and business opportunities along this novel research direction through hardware realization and possible specific applications. We show the possible impacts of QDCs in business and science, especially the machine learning and big data industries.more » « less
-
We present an algorithmic framework for quantum-inspired classical algorithms on close-to-low-rank matrices, generalizing the series of results started by Tang’s breakthrough quantum-inspired algorithm for recommendation systems [STOC’19]. Motivated by quantum linear algebra algorithms and the quantum singular value transformation (SVT) framework of Gilyén et al. [STOC’19], we develop classical algorithms for SVT that run in time independent of input dimension, under suitable quantum-inspired sampling assumptions. Our results give compelling evidence that in the corresponding QRAM data structure input model, quantum SVT does not yield exponential quantum speedups. Since the quantum SVT framework generalizes essentially all known techniques for quantum linear algebra, our results, combined with sampling lemmas from previous work, suffice to generalize all prior results about dequantizing quantum machine learning algorithms. In particular, our classical SVT framework recovers and often improves the dequantization results on recommendation systems, principal component analysis, supervised clustering, support vector machines, low-rank regression, and semidefinite program solving. We also give additional dequantization results on low-rank Hamiltonian simulation and discriminant analysis. Our improvements come from identifying the key feature of the quantum-inspired input model that is at the core of all prior quantum-inspired results: ℓ2-norm sampling can approximate matrix products in time independent of their dimension. We reduce all our main results to this fact, making our exposition concise, self-contained, and intuitive.more » « less
-
Quantum federated learning (QFL) is a novel framework that integrates the advantages of classical federated learning (FL) with the computational power of quantum technologies. This includes quantum computing and quantum machine learning (QML), enabling QFL to handle high-dimensional complex data. QFL can be deployed over both classical and quantum communication networks in order to benefit from informationtheoretic security levels surpassing traditional FL frameworks. In this paper, we provide the first comprehensive investigation of the challenges and opportunities of QFL. We particularly examine the key components of QFL and identify the unique challenges that arise when deploying it over both classical and quantum networks. We then develop novel solutions and articulate promising research directions that can help address the identified challenges. We also provide actionable recommendations to advance the practical realization of QFL.more » « less
An official website of the United States government

