skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Magnet Patterned Superparamagnetic Fe 3 O 4 /Au Core–Shell Nanoplasmonic Sensing Array for Label‐Free High Throughput Cytokine Immunoassay
Abstract

Rapid and accurate immune monitoring plays a decisive role in effectively treating immune‐related diseases especially at point‐of‐care, where an immediate decision on treatment is needed upon precise determination of the patient immune status. Derived from the emerging clinical demands, there is an urgent need for a cytokine immunoassay that offers unprecedented sensor performance with high sensitivity, throughput, and multiplexing capability, as well as short turnaround time at low system complexity, manufacturability, and scalability. In this paper, a label‐free, high throughput cytokine immunoassay based on a magnet patterned Fe3O4/Au core–shell nanoparticle (FACSNP) sensing array is developed. By exploiting the unique superparamagnetic and plasmonic properties of the core–shell nanomaterials, a facile microarray patterning technique is established that allows the fabrication of a uniform, self‐assembled microarray on a large surface area with remarkable tunability and scalability. The sensing performance of the FACSNP microarray is validated by real‐time detection of four cytokines in complex biological samples, showing high sensitivity (≈20 pg mL−1), selectivity and throughput with excellent statistical accuracy. The developed immunoassay is successfully applied for rapid determination of the functional immunophenotype of leukemia tumor‐associated macrophages, manifesting its potential clinical applications for real‐time immune monitoring, early cancer detection, and therapeutic drug stratification toward personalized medicine.

 
more » « less
Award ID(s):
1701322 1701363
PAR ID:
10461910
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Healthcare Materials
Volume:
8
Issue:
4
ISSN:
2192-2640
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Quantitative and dynamic analyses of immune cell secretory cytokines are essential for precise determination and characterization of the “immune phenotype” of patients for clinical diagnosis and treatment of immune-related diseases. Although multiple methods including the enzyme-linked immunosorbent assay (ELISA) have been applied for cytokine detection, such measurements remain very challenging in real-time, high-throughput, and high-sensitivity immune cell analysis. In this paper, we report a highly integrated microfluidic device that allows for on-chip isolation, culture, and stimulation, as well as sensitive and dynamic cytokine profiling of immune cells. Such a microfluidic sensing chip is integrated with cytometric fluorescent microbeads for real-time and multiplexed monitoring of immune cell cytokine secretion dynamics, consuming a relatively small extracted sample volume (160 nl) without interrupting the immune cell culture. Furthermore, it is integrated with a Taylor dispersion-based mixing unit in each detection chamber that shortens the immunoassay period down to less than 30 minutes. We demonstrate the profiling of multiple pro-inflammatory cytokine secretions ( e.g. interleukin-6, interleukin-8, and tumor necrosis factors) of human peripheral blood mononuclear cells (PBMCs) with a sensitivity of 20 pg ml −1 and a sample volume of 160 nl per detection. Further applications of this automated, rapid, and high-throughput microfluidic immunophenotyping platform can help unleash the mechanisms of systemic immune responses, and enable efficient assessments of the pathologic immune status for clinical diagnosis and immune therapy. 
    more » « less
  2. null (Ed.)
    Abstract Digital protein assays have great potential to advance immunodiagnostics because of their single-molecule sensitivity, high precision, and robust measurements. However, translating digital protein assays to acute clinical care has been challenging because it requires deployment of these assays with a rapid turnaround. Herein, we present a technology platform for ultrafast digital protein biomarker detection by using single-molecule counting of immune-complex formation events at an early, pre-equilibrium state. This method, which we term “pre-equilibrium digital enzyme-linked immunosorbent assay” (PEdELISA), can quantify a multiplexed panel of protein biomarkers in 10 µL of serum within an unprecedented assay incubation time of 15 to 300 seconds over a 104 dynamic range. PEdELISA allowed us to perform rapid monitoring of protein biomarkers in patients manifesting post-chimeric antigen receptor T-cell therapy cytokine release syndrome, with ∼30-minute sample-to-answer time and a sub–picograms per mL limit of detection. The rapid, sensitive, and low-input volume biomarker quantification enabled by PEdELISA is broadly applicable to timely monitoring of acute disease, potentially enabling more personalized treatment. 
    more » « less
  3. Abstract

    Chemiluminescence immunoassay exhibits high sensitivity and signal‐to‐noise ratio, thus attracting great attention in the early diagnosis and dynamic monitoring of diseases. However, the collection of conventional flash‐type chemiluminescence signal (<5 s) relies heavily on automatic sampling and reading instrument. Herein, a novel core‐satellite multifunctional chemiluminescence immunosensor is designed for the efficient enrichment and highly sensitive determination of cancer biomarker carcinoembryonic antigen (CEA) with enhanced and long‐lasting output signal that can be conveniently recorded by a simple microplate plate reading instrument. Anti‐CEA monoclonal antibody 2 (Ab2) modified Fe3O4@SiO2microspheres (Fe3O4@SiO2‐Ab2, 370 nm in diameter) are synthesized as the core for selectively capturing and enriching target CEA in solution, and anti‐human CEA monoclonal antibody 1 (Ab1) and horseradish peroxidase (HRP) co‐immobilized dendritic large‐mesoporous silica nanospheres (MSNs‐HRP/Ab1, 80 nm in diameter, pore size: 17 nm) are synthesized as the satellite for efficient immunological recognition and signal amplification. The as‐designed core‐satellite magnetic chemiluminescence immunosensors exhibit a broad linear range of 0.01−20 ng mL−1and a low detection limit of 3.0 pg mL−1for the convenient, highly specific, and sensitive determination of CEA in human serum. Such core‐satellite chemiluminescence immunosensors are expected to act as a powerful tool for in vitro detection of various biomarkers, overcome the defect of conventional chemiluminescence relying heavily on expensive and bulky automatic instruments and popularize chemiluminescence analysis to primary medical institutions and remote areas.

     
    more » « less
  4. Despite widespread concern regarding cytokine storms leading to severe morbidity in COVID-19, rapid cytokine assays are not routinely available for monitoring critically ill patients. We report the clinical application of a digital protein microarray platform for rapid multiplex quantification of cytokines from critically ill COVID-19 patients admitted to the intensive care unit (ICU) at the University of Michigan Hospital. The platform comprises two low-cost modules: (i) a semi-automated fluidic dispensing/mixing module that can be operated inside a biosafety cabinet to minimize the exposure of the technician to the virus infection and (ii) a 12–12–15 inch compact fluorescence optical scanner for the potential near-bedside readout. The platform enabled daily cytokine analysis in clinical practice with high sensitivity (<0.4 pg mL −1 ), inter-assay repeatability (∼10% CV), and rapid operation providing feedback on the progress of therapy within 4 hours. This test allowed us to perform serial monitoring of two critically ill patients with respiratory failure and to support immunomodulatory therapy using the selective cytopheretic device (SCD). We also observed clear interleukin-6 (IL-6) elevations after receiving tocilizumab (IL-6 inhibitor) while significant cytokine profile variability exists across all critically ill COVID-19 patients and to discover a weak correlation between IL-6 to clinical biomarkers, such as ferritin and C-reactive protein (CRP). Our data revealed large subject-to-subject variability in patients' response to COVID-19, reaffirming the need for a personalized strategy guided by rapid cytokine assays. 
    more » « less
  5. null (Ed.)
    Abstract The ability to measure total and phosphorylated tau levels in clinical samples is transforming the detection of Alzheimer’s disease (AD) and other neurodegenerative diseases. In particular, recent reports indicate that accurate detection of low levels of phosphorylated tau (p-tau) in plasma provides a reliable biomarker of AD long before sensing memory loss. Therefore, the diagnosis and monitoring of neurodegenerative diseases progression using blood samples is becoming a reality. These major advances were achieved by using antibodies specific to p-tau as well as sophisticated high-sensitivity immunoassay platforms. This review focuses on these enabling advances in high-specificity antibody development, engineering, and novel signal detection methods. We will draw insights from structural studies on p-tau antibodies, engineering efforts to improve their binding properties, and efforts to validate their specificity. A comprehensive survey of high-sensitivity p-tau immunoassay platforms along with sensitivity limits will be provided. We conclude that although robust approaches for detecting certain p-tau species have been established, systematic efforts to validate antibodies for assay development is still needed for the recognition of biomarkers for AD and other neurodegenerative diseases. 
    more » « less