skip to main content


This content will become publicly available on June 14, 2024

Title: Elucidating a dissolution–deposition reaction mechanism by multimodal synchrotron X-ray characterization in aqueous Zn/MnO 2 batteries
Aqueous Zn/MnO 2 batteries with their environmental sustainability and competitive cost, are becoming a promising, safe alternative for grid-scale electrochemical energy storage. Presented as a promising design principle to deliver a higher theoretical capacity, this work offers fundamental understanding of the dissolution–deposition mechanism of Zn/β-MnO 2 . A multimodal synchrotron characterization approach including three operando X-ray techniques (powder diffraction, absorption spectroscopy, and fluorescence microscopy) is coupled with elementally resolved synchrotron X-ray nano-tomography. Together they provide a direct correlation between structural evolution, reaction chemistry, and 3D morphological changes. Operando synchrotron X-ray diffraction and spectroscopy show a crystalline-to-amorphous phase transition. Quantitative modeling of the operando data by Rietveld refinement for X-ray diffraction and multivariate curve resolution (MCR) for X-ray absorption spectroscopy are used in a complementary fashion to track the structural and chemical transitions of both the long-range (crystalline phases) and short-range (including amorphous phases) ordering upon cycling. Scanning X-ray microscopy and full-field nano-tomography visualizes the morphology of electrodes at different electrochemical states with elemental sensitivity to spatially resolve the formation of the Zn- and Mn-containing phases. Overall, this work critically indicates that for Zn/MnO 2 aqueous batteries, the reaction pathways involving Zn–Mn complex formation upon cycling become independent of the polymorphs of the initial electrode and sheds light on the interplay among structural, chemical, and morphological evolution for electrochemically driven phase transitions.  more » « less
Award ID(s):
1922639
NSF-PAR ID:
10461934
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Energy & Environmental Science
Volume:
16
Issue:
6
ISSN:
1754-5692
Page Range / eLocation ID:
2464 to 2482
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Manganese dioxide (MnO 2 ) with different crystal structures has been widely investigated as the cathode material for Zn-ion batteries, among which spinel λ -MnO 2 is yet rarely reported because Zn-ion intercalation in spinel lattice is speculated to be limited by the narrow three-dimensional tunnels. In this work, we demonstrate that Zn-ion insertion in spinel lattice can be enhanced by reducing particle size and elucidate an intriguing electrochemical reaction mechanism dependent on particle size. Specifically, λ -MnO 2 nanoparticles (NPs, ~80 nm) deliver a high capacity of 250 mAh/g at 20 mA/g due to large surface area and solid-solution type phase transition pathway. Meanwhile, severe water-induced Mn dissolution leads to the poor cycling stability of NPs. In contrast, micron-sized λ -MnO 2 particles (MPs, ~0.9  μ m) unexpectedly undergo an activation process with the capacity continuously increasing over the first 50 cycles, which can be attributed to the formation of amorphous MnO x nanosheets in the open interstitial space of the MP electrode. By adding MnSO 4 to the electrolyte, Mn dissolution can be suppressed, leading to significant improvement in the cycling performance of NPs, with a capacity of 115 mAh/g retained at 1 A/g for over 500 cycles. This work pinpoints the distinctive impacts of the particle size on the reaction mechanism and cathode performance in aqueous Zn-ion batteries. 
    more » « less
  2. Abstract

    The reactivity of water with Li‐rich layered Li2RuO3and partial exchange of Li2O with H2O within the structure is studied under aqueous (electro)chemical conditions. Upon slow delithiation in water over long time periods, micron‐sized Li2RuO3particles structurally transform from an O3 structure to an O1 structure with a corresponding loss of 1.25 Li ions per formula unit. The O1 stacking of the honeycomb Ru layers is imaged using high‐resolution high‐angle annular dark‐field scanning transmission electron microscopy, and the resulting structure is solved by X‐ray powder diffraction and electron diffraction. In situ X‐ray absorption spectroscopy suggests that reversible oxidation/reduction of bulk Ru sites is realized on potential cycling between 0.4 and 1.25 VRHEin basic solutions. In addition to surface redox pseudocapacitance, the partially delithiated phase of Li2RuO3shows high capacity, which can be attributed to bulk Ru redox in the structure. This work demonstrates that the interaction of aqueous electrolytes with Li‐rich layered oxides can result in the formation of new phases with (electro)chemical properties that are distinct from the parent material. This understanding is important for the design of aqueous batteries, electrochemical capacitors, and chemically stable cathode materials for Li‐ion batteries.

     
    more » « less
  3. Recent work has demonstrated a low-temperature route to fabricating mixed ionic/electronic conducting (MIEC) thin films with enhanced oxygen exchange kinetics by crystallizing amorphous-grown thin films under mild temperatures, eluding conditions for deleterious A-site cation surface segregation. Yet, the complex, multiscale chemical and structural changes during MIEC crystallization and their implications for the electrical properties remain relatively unexplored. In this work, micro-structural and atomic-scale structural and chemical changes in crystallizing SrTi 0.65 Fe 0.35 O 3− δ thin films on insulating (0001)-oriented Al 2 O 3 substrates are observed and correlated to changes in the in-plane electrical conductivity, measured in situ by ac impedance spectroscopy. Synchrotron X-ray absorption spectroscopy at the Fe and Ti K-edges gives direct evidence of oxidation occurring with the onset of crystallization and insight into the atomic-scale structural changes driven by the chemical changes. The observed oxidation, increase in B-site polyhedra symmetry, and alignment of neighboring B-site cation coordination units demonstrate increases in both hole concentration and mobility, thus underpinning the measured increase of in-plane conductivity by over two orders of magnitude during crystallization. High resolution transmission electron microscopy and spectroscopy of films at various degrees of crystallinity reveal compositional uniformity with extensive nano-porosity in the crystallized films, consistent with solid phase contraction expected from both oxidation and crystallization. We suggest that this chemo-mechanically driven dynamic nano-structuring is an additional contributor to the observed electrical behavior. By the point that the films become ∼60% crystalline (according to X-ray diffraction), the conductivity reaches the value of dense, fully crystalline films. Given the resulting high electronic conductivity, this low-temperature processing route leading to semi-crystalline hierarchical films exhibits promise for developing high performance MIECs for low-to-intermediate temperature applications. 
    more » « less
  4. Ever-increasing demands for energy, particularly being environmentally friendly have promoted the transition from fossil fuels to renewable energy.1Lithium-ion batteries (LIBs), arguably the most well-studied energy storage system, have dominated the energy market since their advent in the 1990s.2However, challenging issues regarding safety, supply of lithium, and high price of lithium resources limit the further advancement of LIBs for large-scale energy storage applications.3Therefore, attention is being concentrated on an alternative electrochemical energy storage device that features high safety, low cost, and long cycle life. Rechargeable aqueous zinc-ion batteries (ZIBs) is considered one of the most promising alternative energy storage systems due to the high theoretical energy and power densities where the multiple electrons (Zn2+) . In addition, aqueous ZIBs are safer due to non-flammable electrolyte (e.g., typically aqueous solution) and can be manufactured since they can be assembled in ambient air conditions.4As an essential component in aqueous Zn-based batteries, the Zn metal anode generally suffers from the growth of dendrites, which would affect battery performance in several ways. Second, the led by the loose structure of Zn dendrite may reduce the coulombic efficiency and shorten the battery lifespan.5

    Several approaches were suggested to improve the electrochemical stability of ZIBs, such as implementing an interfacial buffer layer that separates the active Zn from the bulk electrolyte.6However, the and thick thickness of the conventional Zn metal foils remain a critical challenge in this field, which may diminish the energy density of the battery drastically. According to a theretical calculation, the thickness of a Zn metal anode with an areal capacity of 1 mAh cm-2is about 1.7 μm. However, existing extrusion-based fabrication technologies are not capable of downscaling the thickness Zn metal foils below 20 μm.

    Herein, we demonstrate a thickness controllable coating approach to fabricate an ultrathin Zn metal anode as well as a thin dielectric oxide separator. First, a 1.7 μm Zn layer was uniformly thermally evaporated onto a Cu foil. Then, Al2O3, the separator was deposited through sputtering on the Zn layer to a thickness of 10 nm. The inert and high hardness Al2O3layer is expected to lower the polarization and restrain the growth of Zn dendrites. Atomic force microscopy was employed to evaluate the roughness of the surface of the deposited Zn and Al2O3/Zn anode structures. Long-term cycling stability was gauged under the symmetrical cells at 0.5 mA cm-2for 1 mAh cm-2. Then the fabricated Zn anode was paired with MnO2as a full cell for further electrochemical performance testing. To investigate the evolution of the interface between the Zn anode and the electrolyte, a home-developed in-situ optical observation battery cage was employed to record and compare the process of Zn deposition on the anodes of the Al2O3/Zn (demonstrated in this study) and the procured thick Zn anode. The surface morphology of the two Zn anodes after circulation was characterized and compared through scanning electron microscopy. The tunable ultrathin Zn metal anode with enhanced anode stability provides a pathway for future high-energy-density Zn-ion batteries.

    Obama, B., The irreversible momentum of clean energy.Science2017,355(6321), 126-129.

    Goodenough, J. B.; Park, K. S., The Li-ion rechargeable battery: a perspective.J Am Chem Soc2013,135(4), 1167-76.

    Li, C.; Xie, X.; Liang, S.; Zhou, J., Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc‐ion Batteries.Energy & Environmental Materials2020,3(2), 146-159.

    Jia, H.; Wang, Z.; Tawiah, B.; Wang, Y.; Chan, C.-Y.; Fei, B.; Pan, F., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries.Nano Energy2020,70.

    Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T., Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives.Nanomicro Lett2022,14(1), 42.

    Yang, Q.; Li, Q.; Liu, Z.; Wang, D.; Guo, Y.; Li, X.; Tang, Y.; Li, H.; Dong, B.; Zhi, C., Dendrites in Zn-Based Batteries.Adv Mater2020,32(48), e2001854.

    Acknowledgment

    This work was partially supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 22011044) by KRISS.

    Figure 1

     

    more » « less
  5. null (Ed.)
    Both electronic and ionic conductivities are of high importance to the performance of anode materials for Li-ion batteries. Many large capacity anode materials (such as Ge) do not have sufficiently high electronic and ionic conductivities required for high-rate cycling. Here, we report a novel ternary compound, copper germanium phosphide (CuGe 2 P 3 ), as a high-rate anode. Being synthesized via a facile and scalable mechanochemistry method, CuGe 2 P 3 has a cation-disordered sphalerite structure and offers higher ionic and electronic conductivities and better tolerance to volume change during cycling than Ge, as confirmed by first principles calculations and experimental characterization, including high-resolution synchrotron X-ray diffraction, HRTEM, SAED, XPS and Raman spectroscopy. Furthermore, the results suggest that CuGe 2 P 3 has a reversible Li-storage mechanism of conversion reaction. When composited with graphite by virtue of a two-stage ball-milling process, the yolk–shell structure of the amorphous carbon-coated CuGe 2 P 3 nanocomposite (CuGe 2 P 3 /C@Graphene) delivers a high initial coulombic efficiency (91%), a superior cycling stability (1312 mA h g −1 capacity after 600 cycles at 0.2 A g −1 and 876 mA h g −1 capacity after 1600 cycles at 2 A g −1 ), and an excellent rate capability (386 mA h g −1 capacity at 30 A g −1 ), surpassing most Ge-based anodes reported to date. Moreover, a series of cation-disordered new phases in the Cu(Zn)–Ge–P family with various cation ratios offer similar Li-storage properties, achieving high reversible capacities with high initial coulombic efficiencies and desirable redox chemistry with improved safety. 
    more » « less