Manganese dioxide (MnO 2 ) with different crystal structures has been widely investigated as the cathode material for Zn-ion batteries, among which spinel λ -MnO 2 is yet rarely reported because Zn-ion intercalation in spinel lattice is speculated to be limited by the narrow three-dimensional tunnels. In this work, we demonstrate that Zn-ion insertion in spinel lattice can be enhanced by reducing particle size and elucidate an intriguing electrochemical reaction mechanism dependent on particle size. Specifically, λ -MnO 2 nanoparticles (NPs, ~80 nm) deliver a high capacity of 250 mAh/g at 20 mA/g due to large surface area and solid-solution type phase transition pathway. Meanwhile, severe water-induced Mn dissolution leads to the poor cycling stability of NPs. In contrast, micron-sized λ -MnO 2 particles (MPs, ~0.9 μ m) unexpectedly undergo an activation process with the capacity continuously increasing over the first 50 cycles, which can be attributed to the formation of amorphous MnO x nanosheets in the open interstitial space of the MP electrode. By adding MnSO 4 to the electrolyte, Mn dissolution can be suppressed, leading to significant improvement in the cycling performance of NPs, with a capacity of 115 mAh/g retained at 1 A/g for over 500 cycles. This work pinpoints the distinctive impacts of the particle size on the reaction mechanism and cathode performance in aqueous Zn-ion batteries.
more »
« less
Elucidating a dissolution–deposition reaction mechanism by multimodal synchrotron X-ray characterization in aqueous Zn/MnO 2 batteries
Aqueous Zn/MnO 2 batteries with their environmental sustainability and competitive cost, are becoming a promising, safe alternative for grid-scale electrochemical energy storage. Presented as a promising design principle to deliver a higher theoretical capacity, this work offers fundamental understanding of the dissolution–deposition mechanism of Zn/β-MnO 2 . A multimodal synchrotron characterization approach including three operando X-ray techniques (powder diffraction, absorption spectroscopy, and fluorescence microscopy) is coupled with elementally resolved synchrotron X-ray nano-tomography. Together they provide a direct correlation between structural evolution, reaction chemistry, and 3D morphological changes. Operando synchrotron X-ray diffraction and spectroscopy show a crystalline-to-amorphous phase transition. Quantitative modeling of the operando data by Rietveld refinement for X-ray diffraction and multivariate curve resolution (MCR) for X-ray absorption spectroscopy are used in a complementary fashion to track the structural and chemical transitions of both the long-range (crystalline phases) and short-range (including amorphous phases) ordering upon cycling. Scanning X-ray microscopy and full-field nano-tomography visualizes the morphology of electrodes at different electrochemical states with elemental sensitivity to spatially resolve the formation of the Zn- and Mn-containing phases. Overall, this work critically indicates that for Zn/MnO 2 aqueous batteries, the reaction pathways involving Zn–Mn complex formation upon cycling become independent of the polymorphs of the initial electrode and sheds light on the interplay among structural, chemical, and morphological evolution for electrochemically driven phase transitions.
more »
« less
- Award ID(s):
- 1922639
- PAR ID:
- 10461934
- Date Published:
- Journal Name:
- Energy & Environmental Science
- Volume:
- 16
- Issue:
- 6
- ISSN:
- 1754-5692
- Page Range / eLocation ID:
- 2464 to 2482
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent work has demonstrated a low-temperature route to fabricating mixed ionic/electronic conducting (MIEC) thin films with enhanced oxygen exchange kinetics by crystallizing amorphous-grown thin films under mild temperatures, eluding conditions for deleterious A-site cation surface segregation. Yet, the complex, multiscale chemical and structural changes during MIEC crystallization and their implications for the electrical properties remain relatively unexplored. In this work, micro-structural and atomic-scale structural and chemical changes in crystallizing SrTi 0.65 Fe 0.35 O 3− δ thin films on insulating (0001)-oriented Al 2 O 3 substrates are observed and correlated to changes in the in-plane electrical conductivity, measured in situ by ac impedance spectroscopy. Synchrotron X-ray absorption spectroscopy at the Fe and Ti K-edges gives direct evidence of oxidation occurring with the onset of crystallization and insight into the atomic-scale structural changes driven by the chemical changes. The observed oxidation, increase in B-site polyhedra symmetry, and alignment of neighboring B-site cation coordination units demonstrate increases in both hole concentration and mobility, thus underpinning the measured increase of in-plane conductivity by over two orders of magnitude during crystallization. High resolution transmission electron microscopy and spectroscopy of films at various degrees of crystallinity reveal compositional uniformity with extensive nano-porosity in the crystallized films, consistent with solid phase contraction expected from both oxidation and crystallization. We suggest that this chemo-mechanically driven dynamic nano-structuring is an additional contributor to the observed electrical behavior. By the point that the films become ∼60% crystalline (according to X-ray diffraction), the conductivity reaches the value of dense, fully crystalline films. Given the resulting high electronic conductivity, this low-temperature processing route leading to semi-crystalline hierarchical films exhibits promise for developing high performance MIECs for low-to-intermediate temperature applications.more » « less
-
Earth-abundant, cost-effective electrode materials are essential for sustainable rechargeable batteries and global decarbonization. Manganese dioxide (MnO2) and hard carbon both exhibit high structural and chemical tunability, making them excellent electrode candidates for batteries. Herein, we elucidate the impact of electrolytes on the cycling performance of commercial electrolytic manganese dioxide in Li chemistry. We leverage synchrotron X-ray analysis to discern the chemical state and local structural characteristics of Mn during cycling, as well as to quantify the Mn deposition on the counter electrode. By using an ether-based electrolyte instead of conventional carbonate electrolytes, we circumvent the formation of a surface Mn(II)-layer and Mn dissolution from LixMnO2. Consequently, we achieved an impressive ∼100% capacity retention for MnO2after 300 cycles at C/3. To create a lithium metal-lean full cell, we introduce hard carbon as the anode which is compatible with ether-based electrolytes. Commercial hard carbon delivers a specific capacity of ∼230 mAh g−1at 0.1 A g−1without plateau, indicating a surface-adsorption mechanism. The resulting manganese dioxide||hard carbon full cell exhibits stable cycling and high Coulombic efficiency. Our research provides a promising solution to develop cost-effective, scalable, and safe energy storage solutions using widely available manganese oxide and hard carbon materials.more » « less
-
Abstract At crystalline interfaces where a valence-mismatch exists, electronic, and structural interactions may occur to relieve the polar mismatch, leading to the stabilization of non-bulk-like phases. We show that spontaneous reconstructions at polar La0.7Sr0.3MnO3interfaces are correlated with suppressed ferromagnetism for film thicknesses on the order of a unit cell. We investigate the structural and magnetic properties of valence-matched La0.7Sr0.3CrO3/La0.7Sr0.3MnO3interfaces using a combination of high-resolution electron microscopy, first principles theory, synchrotron X-ray scattering and magnetic spectroscopy and temperature-dependent magnetometry. A combination of an antiferromagnetic coupling between the La0.7Sr0.3CrO3and La0.7Sr0.3MnO3layers and a suppression of interfacial polar distortions are found to result in robust long-range ferromagnetic ordering for ultrathin La0.7Sr0.3MnO3. These results underscore the critical importance of interfacial structural and magnetic interactions in the design of devices based on two-dimensional oxide magnetic systems.more » « less
-
Abstract Nickel‐rich layered materials LiNi1‐x‐yMnxCoyO2are promising candidates for high‐energy‐density lithium‐ion battery cathodes. Unfortunately, they suffer from capacity fading upon cycling, especially with high‐voltage charging. It is critical to have a mechanistic understanding of such fade. Herein, synchrotron‐based techniques (including scattering, spectroscopy, and microcopy) and finite element analysis are utilized to understand the LiNi0.6Mn0.2Co0.2O2material from structural, chemical, morphological, and mechanical points of view. The lattice structural changes are shown to be relatively reversible during cycling, even when 4.9 V charging is applied. However, local disorder and strain are induced by high‐voltage charging. Nano‐resolution 3D transmission X‐ray microscopy data analyzed by machine learning methodology reveal that high‐voltage charging induced significant oxidation state inhomogeneities in the cycled particles. Regions at the surface have a rock salt–type structure with lower oxidation state and build up the impedance, while regions with higher oxidization state are scattered in the bulk and are likely deactivated during cycling. In addition, the development of micro‐cracks is highly dependent on the pristine state morphology and cycling conditions. Hollow particles seem to be more robust against stress‐induced cracks than the solid ones, suggesting that morphology engineering can be effective in mitigating the crack problem in these materials.more » « less