skip to main content


Title: Enhancing Phenol Adsorption on Hydrophobic Pd/SiO2 to Achieve Faster and More Selective Hydrogenation
The effect of catalyst hydrophobicity on the kinetics of hydrogenation of aqueous phenol was investigated. The hydrophobicity of a Pd/SBA-15 catalyst was altered by synthesizing an organosilane with biphenylene framework linkers. Partitioning of phenol between the aqueous solution and the pores favors the hydrophobic catalyst by an order of magnitude at room temperature, relative to the hydrophilic catalyst. The rate of hydrogenation at 75 °C is higher in the hydrophobic catalyst, as is the selectivity for the partial hydrogenation product, cyclohexanone. Analysis of kinetic profiles measured using operando 13C NMR reveals that the hydrophobic catalyst has a larger apparent (i.e., composite) adsorption constant for phenol, which results in higher phenol surface coverage and, consequently, faster and more selective hydrogenation to cyclohexanone.  more » « less
Award ID(s):
1805129
NSF-PAR ID:
10461958
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Topics in Catalysis
Volume:
66
ISSN:
1022-5528
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Phenol is an important model compound to understand the thermocatalytic (TCH) and electrocatalytic hydrogenation (ECH) of biomass to biofuels. Although Pt and Rh are among the most studied catalysts for aqueous-phase phenol hydrogenation, the reason why certain facets are active for ECH and TCH is not fully understood. Herein, we identify the active facet of Pt and Rh catalysts for aqueous-phase hydrogenation of phenol and explain the origin of the size-dependent activity trends of Pt and Rh nanoparticles. Phenol adsorption energies extracted on the active sites of Pt and Rh nanoparticles on carbon by fitting kinetic data show that the active sites adsorb phenol weakly. We predict that the turnover frequencies (TOFs) for the hydrogenation of phenol to cyclohexanone on Pt(111) and Rh(111) terraces are higher than those on (221) stepped facets based on density functional theory modeling and mean-field microkinetic simulations. The higher activities of the (111) terraces are due to lower activation energies and weaker phenol adsorption, preventing high coverages of phenol from inhibiting hydrogen adsorption. We measure that the TOF for ECH of phenol increases as the Rh nanoparticle diameter increases from 2 to 10 nm at 298 K and −0.1 V vs the reversible hydrogen electrode, qualitatively matching prior reports for Pt nanoparticles. The increase in experimental TOFs as Pt and Rh nanoparticle diameters increase is due to a larger fraction of terraces on larger particles. These findings clarify the structure sensitivity and active site of Pt and Rh for the hydrogenation of phenol and will inform the catalyst design for the hydrogenation of bio-oils.

     
    more » « less
  2. Nghiem, Long (Ed.)
    Porous membranes having a particular wetting characteristic, hydrophobic or hydrophilic, are used for nondispersive membrane solvent extraction (MSX) where two immiscible phases flow on two sides of the membrane. The aqueous-organic phase interface across which solvent extraction/back extraction occurs remains immobilized on one surface of the membrane. This process requires the pressure of the phase not present in membrane pores to be either equal to or higher than that of the phase present in membrane pores; the excess phase pressure should not exceed a breakthrough pressure. In countercurrent MSX with significant flow pressure drop in each phase, this often poses a problem. To overcome this problem, flat porous Janus membranes were developed using either a base polypropylene (PP) or polyvinylidene fluoride (PVDF) or polyamide (Nylon) membrane, one side of which is hydrophobic and the other being hydrophilic. Such membranes were characterized using the contact angle, liquid entry pressure (LEP) and the droplet breakthrough pressure from each side of the membrane along with characterizations via scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR). Nondispersive solvent extractions were carried out successfully for two systems, octanol-phenol (solute)-water, toluene-acetone (solute)-water, with either flowing phase at a pressure higher than that of the other phase. The phenol extraction system had a high solute distribution coefficient whereas acetone prefers both phases almost identically. The potential practical utility of the MSX technique will be substantially enhanced via Janus MSX membranes. 
    more » « less
  3. Abstract

    A PEM fuel cell with the Nafion ionomer phase of the cathode catalyst layer (CL) that was exposed to hot dry gas during the hot‐pressing process showed improved performance over the whole current density range and ~ 220% peak power increase with humidified air at 80°C. This enhanced performance is attributed to the modified structure of the perfluorosulfonic acid (PFSA) ionomer layer in the CL during the MEA's hot‐pressing process. The dry gas exposure above the glass transition temperature (Tg) results in the aggregation of the ionic groups to retain the residue water molecules. This process separates the ionomer into ionic‐group‐rich domains and ionic‐group‐sparse domains. The ionic‐group‐sparse domains create hydrophobic interface and reactant transport channels with lower water content and thus higher oxygen solubility in the ionomer. Accordingly, the water‐unsaturated ionomer and its surface hydrophobicity enhance the kinetic‐controlled and concentration‐polarized regions of the fuel cell polarization curve, respectively. The surface hydrophobicity of the ionomer layer is analyzed by the contact angle measurement and XPS. The durability of the hydrophobic effect belowTgis demonstrated by boiling the treated material. Re‐treating the hydrophobic sample with humidified gas exposure aboveTgeventually exhibits hydrophilic features, further proving the manipulability of the ionic group distribution.

     
    more » « less
  4. Amphiphilic block copolymer micelles can mimic the ability of natural lung surfactant to reduce the air–water interfacial tension down close to zero and prevent the Laplace pressure-induced alveolar collapse. In this work, we investigated the air–water interfacial behaviors of polymer micelles derived from eight different poly(ethylene glycol)(PEG)-based block copolymers having different hydrophobic block chemistries to elucidate the effect of the core block chemistry on the surface mechanics of the block copolymer micelles. Aqueous micelles of about 30 nm in hydrodynamic diameter were prepared from the PEG-based block copolymers via equilibrium nanoprecipitation and spread on water surface using water as the spreading medium. Surface pressure–area isotherm and quantitative Brewster angle microscopy measurements were performed to investigate how the micelle/monolayer structures change during lateral compression of the monolayer; widely varying structural behaviors were observed, including wrinkling/collapse of micelle monolayers, and deformation and/or desorption of individual micelles. By bivariate correlation regression analysis of surface pressure-area isotherm data, it was found that the rigidity and hydrophobicity of the hydrophobic core domain, which are quantified by glass transition temperature (Tg) and water contact angle (θ) measurements, respectively, are coupled factors that need to be taken into account concurrently in order to control the surface mechanical properties of polymer micelle monolayers; micelles having rigid and strongly hydrophobic cores exhibited high surface pressure and high compressibility modulus under high compression. High surface pressure and high compressibility modulus were also found to be correlated with the formation of wrinkles in the micelle monolayer (visualized by Brewster angle microscopy). From this study, we conclude that polymer micelles based on hydrophobic block materials having higher Tg and θ are more suitable for surfactant replacement therapy applications which require the therapeutic surfactant to produce high surface pressure and modulus at the alveolar air–water interface. 
    more » « less
  5. Abstract

    Hydrophobic deep eutectic solvents (DESs) emerge as candidates to extract organic substrates from aqueous solutions. The DES‐aqueous liquid–liquid interface plays a vital role in the extraction ability of DESs because the nonbulk structure of interfacial molecules could cause thermodynamic and kinetic barriers. One question is how the DES compositions affect the structural features of the interface. We investigate the density profile, dipole moment, and hydrogen bonds of eight hydrophobic DES‐aqueous interfaces using molecular dynamics simulations. The eight DESs are composed of four organic compounds: decanoic acid, menthol, thymol, and lidocaine. The results show the variations of dipole moment and hydrogen bond structure and dynamics at the interfaces. These variations could influence the extraction ability of DES through adjusting the partition and kinetics of organic substrates in the DES‐aqueous biphasic systems. We also analyze the relationship between the variation of these interfacial features and the size and hydrophobicity of DES components.

     
    more » « less