Digital twin is a vital enabling technology for smart manufacturing in the era of Industry 4.0. Digital twin effectively replicates its physical asset enabling easy visualization, smart decision-making and cognitive capability in the system. In this paper, a framework of dynamic data driven digital twin for complex engineering products was proposed. To illustrate the proposed framework, an example of health management on aircraft engines was studied. This framework models the digital twin by extracting information from the various sensors and Industry Internet of Things (IIoT) monitoring the remaining useful life (RUL) of an engine in both cyber and physical domains. Then, with sensor measurements selected from linear degradation models, a long short-term memory (LSTM) neural network is proposed to dynamically update the digital twin, which can estimate the most up-to-date RUL of the physical aircraft engine. Through comparison with other machine learning algorithms, including similarity based linear regression and feed forward neural network, on RUL modelling, this LSTM based dynamical data driven digital twin provides a promising tool to accurately replicate the health status of aircraft engines. This digital twin based RUL technique can also be extended for health management and remote operation of manufacturing systems.
more »
« less
Physically Invertible System Identification for Monitoring System Edges with Unobservability
Nowadays, the data collected in physical/engineering systems allows various machine learning methods to conduct system monitoring and control, when the physical knowledge on the system edge is limited and challenging to recover completely. Solving such problems typically requires identifying forward system mapping rules, from system states to the output measurements. However, the forward system identification based on digital twin can hardly provide complete monitoring functions, such as state estimation, e.g., to infer the states from measurements. While one can directly learn the inverse mapping rule, it is more desirable to re-utilize the forward digital twin since it is relatively easy to embed physical law there to regularize the inverse process and avoid overfitting. For this purpose, this paper proposes an invertible learning structure based on designing parallel paths in structural neural networks with basis functionals and embedding virtual storage variables for information preservation. For such a two-way digital twin modeling, there is an additional challenge of multiple solutions for system inverse, which contradict the reality of one feasible solution for the current system. To avoid ambiguous inverse, the proposed model maximizes the physical likelihood to contract the original solution space, leading to the unique system operation status of interest. We validate the proposed method on various physical system monitoring tasks and scenarios, such as inverse kinematics problems, power system state estimation, etc. Furthermore, by building a perfect match of a forward-inverse pair, the proposed method obtains accurate and computation-efficient inverse predictions, given observations. Finally, the forward physical interpretation and small prediction errors guarantee the explainability of the invertible structure, compared to standard learning methods.
more »
« less
- Award ID(s):
- 1810537
- PAR ID:
- 10461960
- Date Published:
- Journal Name:
- Machine Learning and Knowledge Discovery in Databases: European Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this work, we integrate digital twin technology with RFID localization to achieve real-time monitoring of physical items in a large-scale complex environment, such as warehouses and retail stores. To map the item-level realities into a digital environment, we proposed a sensor fusion technique that merges a 3D map created by RGB-D and tracking cameras with real-time RFID tag location estimation derived from our novel Bayesian filter approach. Unlike mainstream localization methods, which rely on phase or RSSI measurements, our proposed method leverages a fixed RF transmission power model. This approach extends localization capabilities to all existing RFID devices, offering a significant advancement over conventional techniques. As a result, the proposed method transforms any RFID device into a digital twin scanner with the support of RGB-D cameras. To evaluate the performance of the proposed method, we prototype the system with commercial off-the-shelf (COTS) equipment in two representative retail scenarios. The overall performance of the system is demonstrated in a mock retail apparel store covering an area of 207 m2, while the quantitative experimental results are examined in a small-scale testbed to showcase the accuracy of item-level tag localization.more » « less
-
In many physical systems, inputs related by intrinsic system symmetries are mapped to the same output. When inverting such physical systems, i.e., solving the associated inverse problems, there is no unique solution. This causes fundamental difficulty in deploying the emerging end-to-end deep learning approach. Using the generalized phase retrieval problem as an illustrative example, we show that careful symmetry breaking on training data can help remove the difficulty and significantly improve the learning performance. We also extract and highlight the underlying mathematical principle of the proposed solution, which is directly applicable to other inverse problems. A full-length version of this paper can be found at https://arxiv.org/abs/2003.09077.more » « less
-
Abstract There are two broad modeling paradigms in scientific applications: forward and inverse. While forward modeling estimates the observations based on known causes, inverse modeling attempts to infer the causes given the observations. Inverse problems are usually more critical as well as difficult in scientific applications as they seek to explore the causes that cannot be directly observed. Inverse problems are used extensively in various scientific fields, such as geophysics, health care and materials science. Exploring the relationships from properties to microstructures is one of the inverse problems in material science. It is challenging to solve the microstructure discovery inverse problem, because it usually needs to learn a one-to-many nonlinear mapping. Given a target property, there are multiple different microstructures that exhibit the target property, and their discovery also requires significant computing time. Further, microstructure discovery becomes even more difficult because the dimension of properties (input) is much lower than that of microstructures (output). In this work, we propose a framework consisting of generative adversarial networks and mixture density networks for inverse modeling of structure–property linkages in materials, i.e., microstructure discovery for a given property. The results demonstrate that compared to baseline methods, the proposed framework can overcome the above-mentioned challenges and discover multiple promising solutions in an efficient manner.more » « less
-
Arai, K. (Ed.)Digital twin technology has found wide applications in the aerospace industry, for fleet monitoring, diagnostics, predictive maintenance, and manufacturing. Sensing the aero-engine in a test environment is challenging, due to issues with noisy and failed sensors, introduced by extreme conditions. Downstream diagnostics and prognostics require that key sensed values are available for the duration of the test for both real-time and off-line analysis. Virtual sensors that mimic the behavior of the physical sensors provide a resilient solution in the presence of such failures. This paper describes virtual sensors designed using a low-cost digital twin platform with off-the-shelf analytical software components and libraries. The platform is a no-code environment, that permits users to rapidly experiment with different analytical models and configurations. We show that virtual sensors can emulate the behavior of the physical sensor(s) in the event of multiple physical sensor failures with high accuracy, the design of which is facilitated by the Digital Twin platform. From a process standpoint, the Digital Twin results in several advantages to the organization including the breaking down of departmental data silos, reevaluation of key assumptions regarding system design, and the standardization of monitoring process. The digital twin approach is seen to be a catalyst for reengineering the design and monitoring lifecycle for industrial organizations.more » « less
An official website of the United States government

