skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Classification of domains in predicted structures of the human proteome
Recent advances in protein structure prediction have generated accurate structures of previously uncharacterized human proteins. Identifying domains in these predicted structures and classifying them into an evolutionary hierarchy can reveal biological insights. Here, we describe the detection and classification of domains from the human proteome. Our classification indicates that only 62% of residues are located in globular domains. We further classify these globular domains and observe that the majority (65%) can be classified among known folds by sequence, with a smaller fraction (33%) requiring structural data to refine the domain boundaries and/or to support their homology. A relatively small number (966 domains) cannot be confidently assigned using our automatic pipelines, thus demanding manual inspection. We classify 47,576 domains, of which only 23% have been included in experimental structures. A portion (6.3%) of these classified globular domains lack sequence-based annotation in InterPro. A quarter (23%) have not been structurally modeled by homology, and they contain 2,540 known disease-causing single amino acid variations whose pathogenesis can now be inferred using AF models. A comparison of classified domains from a series of model organisms revealed expansions of several immune response-related domains in humans and a depletion of olfactory receptors. Finally, we use this classification to expand well-known protein families of biological significance. These classifications are presented on the ECOD website ( http://prodata.swmed.edu/ecod/index_human.php ).  more » « less
Award ID(s):
2224128
PAR ID:
10462052
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
12
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The recent breakthroughs in structure prediction, where methods such as AlphaFold demonstrated near‐atomic accuracy, herald a paradigm shift in structural biology. The 200 million high‐accuracy models released in the AlphaFold Database are expected to guide protein science in the coming decades. Partitioning these AlphaFold models into domains and assigning them to an evolutionary hierarchy provide an efficient way to gain functional insights into proteins. However, classifying such a large number of predicted structures challenges the infrastructure of current structure classifications, including our Evolutionary Classification of protein Domains (ECOD). Better computational tools are urgently needed to parse and classify domains from AlphaFold models automatically. Here we present a Domain Parser for AlphaFold Models (DPAM) that can automatically recognize globular domains from these models based on inter‐residue distances in 3D structures, predicted aligned errors, and ECOD domains found by sequence (HHsuite) and structural (Dali) similarity searches. Based on a benchmark of 18,759 AlphaFold models, we demonstrate that DPAM can recognize 98.8% of domains and assign correct boundaries for 87.5%, significantly outperforming structure‐based domain parsers and homology‐based domain assignment using ECOD domains found by HHsuite or Dali. Application of DPAM to the massive AlphaFold models will enable efficient classification of domains, providing evolutionary contexts and facilitating functional studies. 
    more » « less
  2. Dunbrack, Roland L (Ed.)
    Protein structure prediction has now been deployed widely across several different large protein sets. Large-scale domain annotation of these predictions can aid in the development of biological insights. Using our Evolutionary Classification of Protein Domains (ECOD) from experimental structures as a basis for classification, we describe the detection and cataloging of domains from 48 whole proteomes deposited in the AlphaFold Database. On average, we can provide positive classification (either of domains or other identifiable non-domain regions) for 90% of residues in all proteomes. We classified 746,349 domains from 536,808 proteins comprised of over 226,424,000 amino acid residues. We examine the varying populations of homologous groups in both eukaryotes and bacteria. In addition to containing a higher fraction of disordered regions and unassigned domains, eukaryotes show a higher proportion of repeated proteins, both globular and small repeats. We enumerate those highly populated domains that are shared in both eukaryotes and bacteria, such as the Rossmann domains, TIM barrels, and P-loop domains. Additionally, we compare the sampling of homologous groups from this whole proteome set against our stable ECOD reference and discuss groups that have been enriched by structure predictions. Finally, we discuss the implication of these results for protein target selection for future classification strategies for very large protein sets. 
    more » « less
  3. Abstract Salmonella entericais a pathogenic bacterium known for causing severe typhoid fever in humans, making it important to study due to its potential health risks and significant impact on public health. This study provides evolutionary classification of proteins fromSalmonella entericapangenome. We classified 17,238 domains from 13,147 proteins from 79,758Salmonella entericastrains and studied in detail domains of 272 proteins from 14 characterizedSalmonellapathogenicity islands (SPIs). Among SPIs-related proteins, 90 proteins function in the secretion machinery. 41% domains of SPI proteins have no previous sequence annotation. By comparing clinical and environmental isolates, we identified 3682 proteins that are overrepresented in clinical group that we consider as potentially pathogenic. Among domains of potentially pathogenic proteins only 50% domains were annotated by sequence methods previously. Moreover, 36% (1330 out of 3682) of potentially pathogenic proteins cannot be classified into Evolutionary Classification of Protein Domains database (ECOD). Among classified domains of potentially pathogenic proteins the most populated homology groups include helix-turn-helix (HTH), Immunoglobulin-related, and P-loop domains-related. Functional analysis revealed overrepresentation of these protein in biological processes related to viral entry into host cell, antibiotic biosynthesis, DNA metabolism and conformation change, and underrepresentation in translational processes. Analysis of the potentially pathogenic proteins indicates that they form 119 clusters or novel potential pathogenicity islands (NPPIs) within theSalmonellagenome, suggesting their potential contribution to the bacterium’s virulence. One of the NPPIs revealed significant overrepresentation of potentially pathogenic proteins. Overall, our analysis revealed that identified potentially pathogenic proteins are poorly studied. 
    more » « less
  4. Abstract Protein sequence matching presently fails to identify many structures that are highly similar, even when they are known to have the same function. The high packing densities in globular proteins lead to interdependent substitutions, which have not previously been considered for amino acid similarities. At present, sequence matching compares sequences based only upon the similarities of single amino acids, ignoring the fact that in densely packed protein, there are additional conservative substitutions representing exchanges between two interacting amino acids, such as a small‐large pair changing to a large‐small pair substitutions that are not individually so conservative. Here we show that including information for such pairs of substitutions yields improved sequence matches, and that these yield significant gains in the agreements between sequence alignments and structure matches of the same protein pair. The result shows sequence segments matched where structure segments are aligned. There are gains for all 2002 collected cases where the sequence alignments that were not previously congruent with the structure matches. Our results also demonstrate a significant gain in detecting homology for “twilight zone” protein sequences. The amino acid substitution metrics derived have many other potential applications, for annotations, protein design, mutagenesis design, and empirical potential derivation. 
    more » « less
  5. Elofsson, Arne (Ed.)
    Abstract MotivationProtein sequences can be broadly categorized into two classes: those which adopt stable secondary structure and fold into a domain (i.e. globular proteins), and those that do not. The sequences belonging to this latter class are conformationally heterogeneous and are described as being intrinsically disordered. Decades of investigation into the structure and function of globular proteins has resulted in a suite of computational tools that enable their sub-classification by domain type, an approach that has revolutionized how we understand and predict protein functionality. Conversely, it is unknown if sequences of disordered protein regions are subject to broadly generalizable organizational principles that would enable their sub-classification. ResultsHere, we report the development of a statistical approach that quantifies linear variance in amino acid composition across a sequence. With multiple examples, we provide evidence that intrinsically disordered regions are organized into statistically non-random modules of unique compositional bias. Modularity is observed for both low and high-complexity sequences and, in some cases, we find that modules are organized in repetitive patterns. These data demonstrate that disordered sequences are non-randomly organized into modular architectures and motivate future experiments to comprehensively classify module types and to determine the degree to which modules constitute functionally separable units analogous to the domains of globular proteins. Availability and implementationThe source code, documentation, and data to reproduce all figures are freely available at https://github.com/MWPlabUTSW/Chi-Score-Analysis.git. The analysis is also available as a Google Colab Notebook (https://colab.research.google.com/github/MWPlabUTSW/Chi-Score-Analysis/blob/main/ChiScore_Analysis.ipynb). 
    more » « less