Graphene-based Field-Effect Transistors (FETs) integrated with microstrip patch antennas offer a promising approach for terahertz signal radiation. In this study, a dual-stage simulation methodology is employed to comprehensively investigate the device’s performance. The initial stage, executed in MATLAB, delves into charge transport dynamics within a FET under asymmetric boundary conditions, employing hydrodynamic equations for electron transport in the graphene channel. Electromagnetic field interactions are modeled via Finite-Difference Time-Domain (FDTD) techniques. The second stage, conducted in COMSOL Multiphysics, focuses on the microstrip patch antenna’s radiative characteristics. Notably, analysis of the S11 curve reveals minimal reflections at the FET’s resonant frequency of 1.34672 THz, indicating efficient impedance matching. Examination of the radiation pattern demonstrates the antenna’s favorable directional properties. This research underscores the potential of graphene-based FETs for terahertz applications, offering tunable impedance matching and high radiation efficiency for future terahertz devices.
more »
« less
Terahertz conductivity of monolayer MoS$$_2$$
We calculate the electrical conductivity of suspended and supported monolayer MoS2 at terahertz (THz) frequencies by means of EMC–FDTD, a multiphysics simulation tool combining an ensemble Monte Carlo (EMC) solver for electron transport and a finite-difference time-domain (FDTD) solver for full-wave electrodynamics. We investigate the role of carrier and impurity densities, as well as substrate choice (SiO2 or hexagonal boron nitride, hBN), in frequency-dependent electronic transport. Owing to the dominance of surface-optical-phonon scattering, MoS2 on SiO2 has the lowest static conductivity, but also the weakest overall frequency dependence of the conductivity. In fact, at high THz frequencies, the conductivity of MoS2 on SiO2 exceeds that of either suspended or hBN-supported MoS2. We extract the parameters for Drude-model fits to the conductivity versus frequency curves obtained from microscopic simulation, which may aid in the experimental efforts toward MoS2 THz applications.
more »
« less
- Award ID(s):
- 2212011
- PAR ID:
- 10462111
- Date Published:
- Journal Name:
- Journal of Computational Electronics
- ISSN:
- 1569-8025
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Non-volatile radio-frequency (RF) switches based on hexagonal boron nitride (hBN) are realized for the first time with low insertion loss (≤ 0.2 dB) and high isolation (≥ 15 dB) up to 110 GHz. Crystalline hBN enables the thinnest RF switch device with a single monolayer (~0.33 nm) as the memory layer owing to its robust layered structure. It affords ~20 dBm power handling, 10 dB higher compared to MoS 2 switches due to its wider bandgap (~6 eV). Importantly, operating frequencies cover the RF, 5G, and mm-wave bands, making this a promising low-power switch for diverse communication and connectivity front-end systems. Compared to other switch technologies based on MEMS, memristor, and phase-change memory (PCM), hBN switches offer a promising combination of non-volatility, nanosecond switching, power handling, high figure-of-merit cutoff frequency (43 THz), and heater-less ambient integration. Our pioneering work suggests that atomically-thin nanomaterials can be good device candidates for 5G and beyond.more » « less
-
Deoxydehydration (DODH) is an efficient process for the removal of vicinal OH groups of a diol or polyol. Conventional DODH reactions usually take place at a single-site MOx (M=Re, Mo, V etc.) active center, which proceed through a diol condensation step, an alkene extrusion step and a catalyst regeneration (or reduction) step. Here, we suggest that MoS2-supported transition metal atoms allow for the DODH reaction to occur through an alternative mechanism, whereby the C-H bond of a diol is activated first, which facilitates the C-OH bond cleavage on a neighboring carbon. The removal of the second OH group is also facile over the proposed catalysts. Our kinetic studies suggest that the DODH of ethylene glycol on Ru2/MoS2, Ir2/MoS2 and Ru3/MoS2 are highly active with predicted turnover frequencies of over 1/s. Thus, our study suggests a possible approach for the design of highly active DODH catalysts. Apart from being a DODH catalyst, the proposed MoS2-supported catalysts are also highly active as hydrodeoxygenation catalyst for the removal of alcohol OH groups.more » « less
-
Abstract Silicon waveguides have enabled large‐scale manipulation and processing of near‐infrared optical signals on chip. Yet, expanding the bandwidth of guided waves to other frequencies will further increase the functionality of silicon as a photonics platform. Frequency multiplexing by integrating additional architectures is one approach to the problem, but this is challenging to design and integrate within the existing form factor due to scaling with the free‐space wavelength. This paper demonstrates that a hexagonal boron nitride (hBN)/silicon hybrid waveguide can simultaneously enable dual‐band operation at both mid‐infrared (6.5–7.0 µm) and telecom (1.55 µm) frequencies, respectively. The device is realized via the lithography‐free transfer of hBN onto a silicon waveguide, maintaining near‐infrared operation. In addition, mid‐infrared waveguiding of the hyperbolic phonon polaritons (HPhPs) supported in hBN is induced by the index contrast between the silicon waveguide and the surrounding air underneath the hBN, thereby eliminating the need for deleterious etching of the hyperbolic medium. The behavior of HPhP waveguiding in both straight and curved trajectories is validated within an analytical waveguide theoretical framework. This exemplifies a generalizable approach based on integrating hyperbolic media with silicon photonics for realizing frequency multiplexing in on‐chip photonic systems.more » « less
-
Reliable Terahertz (THz) links are necessary for outdoor point-to-point communication with the exponential growth of wireless data traffic. This study presents a modified Monte Carlo simulation procedure for estimating THz link attenuation due to multiple scattering by charged dust particles on the THz beam propagation path. Scattering models are developed for beams through dust, based on Mie and Rayleigh approximations for corresponding frequencies on Earth (0.24 THz) and Mars (0.24 & 1.64 THz). The simulation results are compared, considering parameters such as the number of Monte-Carlo photon (MCP) packets, visibility, dust particle placement density along the beam, frequency, and distance between the transmitter and the receiver. Moreover, a channel capacity model was proposed, considering THz link attenuation due to dust storms, spreading loss, and molecular absorption loss for Earth and Mars outdoor environments. Simulation results for Earth show that the link attenuation increases with dust particle placement density, distance, and frequency, and attenuation decreases with visibility and MCP packets. On Mars, similar results are obtained for both frequencies, except that the attenuation varies around a constant value with the frequency increase. Moreover, attenuation is slightly higher at 0.24 THz frequency compared to 1.64 THz when more dust particles are present on the beam propagation path. Channel capacity is estimated for Earth and Mars environments considering time and distance-dependent scenarios. Time windows that show a sudden drop of dust particles along the beam provide opportunities to communicate with high reliability. Moreover, increasing the distance between the transmitter and receiver severely reduces the channel capacity measurement in strong dust storm conditions in both environments. Our study has found that weak dust storms have relatively little effect on Mars but much more significant effects on Earth.more » « less
An official website of the United States government

