skip to main content


Title: Characteristics of Lake-Effect Precipitation over the Black River Valley and Western Adirondack Mountains
Abstract

Potential factors affecting the inland penetration and orographic modulation of lake-effect precipitation east of Lake Ontario include the environmental (lake, land, and atmospheric) conditions, mode of the lake-effect system, and orographic processes associated with flow across the downstream Tug Hill Plateau (herein Tug Hill), Black River valley, and Adirondack Mountains (herein Adirondacks). In this study we use data from the KTYX WSR-88D, ERA5 reanalysis, New York State Mesonet, and Ontario Winter Lake-effect Systems (OWLeS) field campaign to examine how these factors influence lake-effect characteristics with emphasis on the region downstream of Tug Hill. During an eight-cool-season (16 November–15 April) study period (2012/13–2019/20), total radar-estimated precipitation during lake-effect periods increased gradually from Lake Ontario to upper Tug Hill and decreased abruptly where the Tug Hill escarpment drops into the Black River valley. The axis of maximum precipitation shifted poleward across the northern Black River valley and into the northwestern Adirondacks. In the western Adirondacks, the heaviest lake-effect snowfall periods featured strong, near-zonal boundary layer flow, a deep boundary layer, and a single precipitation band aligned along the long-lake axis. Airborne profiling radar observations collected during OWLeS IOP10 revealed precipitation enhancement over Tug Hill, spillover and shadowing in the Black River valley where a resonant lee wave was present, and precipitation invigoration over the western Adirondacks. These results illustrate the orographic modulation of inland-penetrating lake-effect systems downstream of Lake Ontario and the factors favoring heavy snowfall over the western Adirondacks.

Significance Statement

Inland penetrating lake-effect storms east of Lake Ontario affect remote rural communities, enable a regional winter-sports economy, and contribute to a snowpack that contributes to runoff and flooding during thaws and rain-on-snow events. In this study we illustrate how the region’s three major geographic features—Tug Hill, the Black River valley, and the western Adirondacks—affect the characteristics of lake-effect precipitation, describe the factors contributing to heavy snowfall over the western Adirondacks, and provide an examples of terrain effects in a lake-effect storm observed with a specially instrumented research aircraft.

 
more » « less
Award ID(s):
1929602
NSF-PAR ID:
10462171
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Applied Meteorology and Climatology
Volume:
62
Issue:
9
ISSN:
1558-8424
Format(s):
Medium: X Size: p. 1347-1366
Size(s):
["p. 1347-1366"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Lake-effect snowstorms are often observed to manifest as dominant bands, commonly produce heavy localized snowfall, and may extend large distances inland, resulting in hazards and high societal impact. Some studies of dominant bands have documented concomitant environmental baroclinity (i.e., baroclinity occurring at a scale larger than the width of the parent lake), but the interaction of this baroclinity with the inland structure of dominant bands has been largely unexplored. In this study, the thermodynamic environment and thermodynamic and kinematic structure of simulated dominant bands are examined using WRF reanalyses at 3-km horizontal resolution and an innovative technique for selecting the most representative member from the WRF ensemble. Three reanalysis periods are selected from the Ontario Winter Lake-effect Systems (OWLeS) field campaign, encompassing 185 simulation hours, including 155 h in which dominant bands are identified. Environmental baroclinity is commonly observed during dominant-band periods and occurs in both the north–south and east–west directions. Sources of this baroclinity are identified and discussed. In addition, case studies are conducted for simulation hours featuring weak and strong along-band environmental baroclinity, resulting in weak and strong inland extent, respectively. These contrasting cases offer insight into one mechanism by which along-band environmental baroclinity can influence the inland structure and intensity of dominant bands: in the case with strong environmental baroclinity, inland portions of this band formed under weak instability and therefore exhibit slow overturning, enabling advection far inland under strong winds, whereas the nearshore portion forms under strong instability, and the enhanced overturning eventually leads to the demise of the inland portion of the band.

     
    more » « less
  2. Abstract

    Heavy orographic snowfall can disrupt transportation and threaten lives and property in mountainous regions but benefits water resources, winter sports, and tourism. Little Cottonwood Canyon (LCC) in northern Utah’s Wasatch Range is one of the snowiest locations in the interior western United States and frequently observes orographic snowfall extremes with threats to transportation, structures, and public safety due to storm-related avalanche hazards. Using manual new-snow and liquid precipitation equivalent (LPE) observations, ERA5 reanalyses, and operational radar data, this paper examines the characteristics of cool-season (October–April) 12-h snowfall extremes in upper LCC. The 12-h extremes, defined based on either 95th percentile new snow or LPE, occur for a wide range of crest-level flow directions. The distribution of LPE extremes is bimodal with maxima for south-southwest or north-northwest flow, whereas new-snow extremes occur most frequently during west-northwest flow, which features colder storms with higher snow-to-liquid ratios. Both snowfall and LPE extremes are produced by diverse synoptic patterns, including inland-penetrating or decaying atmospheric rivers from the south through northwest that avoid the southern high Sierra Nevada, frontal systems, post-cold-frontal northwesterly flow, south-southwesterly cold-core flow, and closed low pressure systems. Although often associated with heavy precipitation in other mountainous regions, the linkages between local integrated water vapor transport (IVT) and orographic precipitation extremes in LCC are relatively weak, and during post-cold-frontal northwesterly flow, highly localized and intense snowfall can occur despite low IVT. These results illustrate the remarkable diversity of storm characteristics producing orographic snowfall extremes at this interior continental mountain location.

    Significance Statement

    Little Cottonwood Canyon in northern Utah’s central Wasatch Range frequently experiences extreme snowfall events that pose threats to lives and property. In this study, we illustrate the large diversity of storm characteristics that produce this extreme snowfall. Meteorologists commonly use the amount of water vapor transport in the atmosphere to predict heavy mountain precipitation, but that metric has limited utility in Little Cottonwood Canyon where heavy snowfall can occur with lower values of such transport. Our results can aid weather forecasting in the central Wasatch Range and have implications for understanding precipitation processes in mountain ranges throughout the world.

     
    more » « less
  3. A prolonged period of winter monsoonal flow brought heavy sea-effect snowfall to the Hokuriku region along the west coast of the Japanese island of Honshu from 2 to 7 February 2010. Snowfall in some locations exceeded 140 cm, but the distribution within the event was highly variable. We examine the factors contributing to these variations using data from a Japan Meteorological Agency (JMA) C-band surveillance radar, JMA soundings, surface precipitation observations, and a Weather Research and Forecasting (WRF) Model simulation. There were three distinct periods during the event. Period 1 featured relatively weak flow with precipitation confined mainly to the coast and lowlands. Precipitation maxima were located where the flow ascended: 1) over terrain-blocked air, 2) at the foot of a high flow-normal barrier, or 3) relatively unimpeded over the lower mountain ranges. Flow strengthened during period 2, yielding stronger vertical velocities over the terrain with precipitation maxima shifting inland and to higher elevation. The flow strengthened further in period 3, with the precipitation maxima shifting higher in elevation and into the lee, with almost no precipitation falling in the lowlands. Thus, greater inland penetration and enhancement of precipitation occurred as the flow speed increased, but additional factors such as the subcloud sublimation of hydrometeors and the convective instability also contribute to differences between periods 2 and 3. These results illustrate the importance of incident flow strength in modulating the distribution and enhancement of snowfall in global lake- and sea-effect regions.

     
    more » « less
  4. Abstract

    The Hokuriku region along the west coast of the Japanese island of Honshu receives exceptionally heavy snowfall accumulations, exceeding 500 cm from December to February near sea level and 1300 cm at high elevation sites, much of which is produced by sea-effect systems. Though the climatological enhancement of snowfall is large, the lowland–upland snowfall distribution within individual storms is highly variable, presenting a challenge for weather forecasting and climate projections. Utilizing data from a C-band surveillance radar, the ERA5 reanalysis, and surface precipitation observations, we examine factors affecting the inland and orographic enhancement during sea-effect periods in the Hokuriku region during nine winters (December–February) from December 2007 to February 2016. The distribution and intensity of precipitation exhibits strong dependence on flow direction due to three-dimensional terrain effects. For a given flow direction, higher values of boundary layer wind speed and sea-induced CAPE favor higher precipitation rates, a maximum displaced farther inland and higher in elevation, and a larger ratio of upland to lowland precipitation. These characteristics are also well represented by the nondimensional mountain height H^, with H^<1 associated with a precipitation maximum over the high elevations and a larger ratio of upland to lowland precipitation, and H^>1 having the opposite effect. Nevertheless, even in high enhancement periods, precipitation rates decline as one moves inland from the first major mountain barrier, even over high terrain. These results highlight how the interplay between sea-effect and orographic processes modulates the distribution and intensity of precipitation in an area of complex and formidable topography.

     
    more » « less
  5. Abstract

    The distribution and intensity of lake- and sea-effect (hereafter lake-effect) precipitation are strongly influenced by the mode of landfalling lake-effect systems. Here, we used idealized large-eddy simulations to investigate the downstream evolution and coastal-to-inland transition of two lake-effect modes: 1) a long-lake-axis-parallel (LLAP) band generated by an oval body of water (hereafter lake; e.g., Lake Ontario) and 2) broad-coverage, open-cell convection generated by an open lake (e.g., Sea of Japan). Under identical atmospheric conditions and lake-surface temperatures, the oval lake generates a LLAP band with heavy precipitation along the midlake axis, whereas the open lake generates broad-coverage, open-cell convection with widespread, light accumulations. Over the oval lake, the LLAP band features a thermally forced and diabatically enhanced cross-band secondary circulation with convergence and ascent over the midlake axis. Downstream of the lake, flanking airstreams that avoid lake modification merge beneath the band where they experience sublimational cooling, producing a cold pool. At the upstream edge of the cold pool, a coastal baroclinic zone forms. Above this zone, ascent and hydrometeor mass growth are maximized, resulting in an inland precipitation maximum due to subsequent hydrometeor transport and fallout. Over the open lake, individual open cells grow larger and stronger with overwater extent, but a convective-to-stratiform transition begins at the coast. Here, convective vigor decays, mesoscale ascent begins, and enhanced hydrometeor growth results in an inland precipitation maximum. These results highlight variations in the coastal-to-inland transition of lake-effect systems that ultimately influence the distribution and intensity of lake-effect precipitation.

     
    more » « less