Abstract This study evaluates the methods of identifying the heightziof the top of the convective boundary layer (CBL) during winter (December and January) over the Great Lakes and nearby land areas using observations taken by the University of Wyoming King Air research aircraft during the Lake-Induced Convection Experiment (1997/98) and Ontario Winter Lake-effect Systems (2013/14) field campaigns. Since CBLs facilitate vertical mixing near the surface, the most direct measurement ofziis that above which the vertical velocity turbulent fluctuations are weak or absent. Thus, we usezifrom the turbulence method as the “reference value” to whichzifrom other methods, based on bulk Richardson number (Rib), liquid water content, and vertical gradients of potential temperature, relative humidity, and water vapor mixing ratio, are compared. The potential temperature gradient method using a threshold value of 0.015 K m−1for soundings over land and 0.011 K m−1for soundings over lake provided the estimates ofzithat are most consistent with the turbulence method. The Ribthreshold-based method, commonly used in numerical simulation studies, underestimatedzi. Analyzing the methods’ performance on the averaging windowzavgwe recommend usingzavg= 20 or 50 m forziestimations for lake-effect boundary layers. The present dataset consists of both cloudy and cloud-free boundary layers, some having decoupled boundary layers above the inversion top. Because cases of decoupled boundary layers appear to be formed by nearby synoptic storms, we recommend use of the more general term, elevated mixed layers. Significance StatementThe depthziof the convective atmospheric boundary layer (CBL) strongly influences precipitation rates during lake-effect snowstorms (LES). However, variousziapproximation methods produce significantly different results. This study utilizes extensive concurrently collected observations by project aircraft during two LES field studies [Lake-Induced Convection Experiment (Lake-ICE) and OWLeS] to assess howzifrom common estimation methods compare with “reference”ziderived from turbulent fluctuations, a direct measure of CBL mixing. For soundings taken both over land and lake; with cloudy or cloud-free conditions, potential temperature gradient (PTG) methods provided the best agreement with the referencezi. A method commonly employed in numerical simulations performed relatively poorly. Interestingly, the PTG method worked equally well for “coupled” and elevated decoupled CBLs, commonly associated with nearby cyclones. 
                        more » 
                        « less   
                    
                            
                            Elevated Mixed Layers during Great Lake Lake-Effect Events: An Investigation and Case Study from OWLeS
                        
                    
    
            Abstract Data from rawinsondes launched during intensive observation periods (IOPs) of the Ontario Winter Lake-Effect Systems (OWLeS) field project reveal that elevated mixed layers (EMLs) in the lower troposphere were relatively common near Lake Ontario during OWLeS lake-effect events. Conservatively, EMLs exist in 193 of the 290 OWLeS IOP soundings. The distribution of EML base pressure derived from the OWLeS IOP soundings reveals two classes of EML, one that has a relatively low-elevation base (900–750 hPa) and one that has a relatively high-elevation base (750–500 hPa). It is hypothesized that the former class of EML, which is the focus of this research, is, at times, the result of mesoscale processes related to individual Great Lakes. WRF reanalysis fields from a case study during the OWLeS field project provide evidence of two means by which low-elevation base EMLs can originate from the lake-effect boundary layer convection and associated mesoscale circulations. First, such EMLs can form within the upper-level outflow branches of mesoscale solenoidal circulations. Evacuated Great Lakes–modified convective boundary layer air aloft then lies above ambient air of a greater static stability, forming EMLs. Second, such EMLs can form in the absence of a mesoscale solenoidal circulation when Great Lake–modified convective boundary layers overrun ambient air of a greater density. The reanalysis fields show that EMLs and layers of reduced static stability tied to Great Lakes–modified convective boundary layers can extend downwind for hundreds of kilometers from their areas of formation. Operational implications and avenues for future research are discussed. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1745243
- PAR ID:
- 10481110
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Monthly Weather Review
- Volume:
- 152
- Issue:
- 1
- ISSN:
- 0027-0644
- Format(s):
- Medium: X Size: p. 79-95
- Size(s):
- p. 79-95
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Elevated mixed layers (EMLs) influence the severe convective storm climatology in the contiguous United States (CONUS), playing an important role in the initiation, sustenance, and suppression of storms. This study creates a high-resolution climatology of the EML to analyze variability and potential changes in EML frequency and characteristics for the first time. An objective algorithm is applied to ERA5 to detect EMLs, defined in part as layers of steep lapse rates (≥8.0°C km−1) at least 200 hPa thick, in the CONUS and northern Mexico from 1979 to 2021. EMLs are most frequent over the Great Plains in spring and summer, with a standard deviation of 4–10 EML days per year highlighting sizable interannual variability. Mean convective inhibition associated with the EML’s capping inversion suggests many EMLs prohibit convection, although—like nearly all EML characteristics—there is considerable spread and notable seasonal variability. In the High Plains, statistically significant increases in EML days (4–5 more days per decade) coincide with warmer EML bases and steeper EML lapse rates, driven by warming and drying in the low levels of the western CONUS during the study period. Additionally, increases in EML base temperatures result in significantly more EML-related convective inhibition over the Great Plains, which may continue to have implications for convective storm frequency, intensity, severe perils, and precipitation if this trend persists. Significance StatementElevated mixed layers (EMLs) play a role in the spatiotemporal frequency of severe convective storms and precipitation across the contiguous United States and northern Mexico. This research creates a detailed EML climatology from a modern reanalysis dataset to uncover patterns and potential changes in EML frequency and associated meteorological characteristics. EMLs are most common over the Great Plains in spring and summer, but show significant variability year-to-year. Robust increases in the number of days with EMLs have occurred since 1979 across the High Plains. Lapse rates associated with EMLs have trended steeper, in part due to warmer EML base temperatures. This has resulted in increasing EML convective inhibition, which has important implications for regional climate.more » « less
- 
            Abstract Potential factors affecting the inland penetration and orographic modulation of lake-effect precipitation east of Lake Ontario include the environmental (lake, land, and atmospheric) conditions, mode of the lake-effect system, and orographic processes associated with flow across the downstream Tug Hill Plateau (herein Tug Hill), Black River valley, and Adirondack Mountains (herein Adirondacks). In this study we use data from the KTYX WSR-88D, ERA5 reanalysis, New York State Mesonet, and Ontario Winter Lake-effect Systems (OWLeS) field campaign to examine how these factors influence lake-effect characteristics with emphasis on the region downstream of Tug Hill. During an eight-cool-season (16 November–15 April) study period (2012/13–2019/20), total radar-estimated precipitation during lake-effect periods increased gradually from Lake Ontario to upper Tug Hill and decreased abruptly where the Tug Hill escarpment drops into the Black River valley. The axis of maximum precipitation shifted poleward across the northern Black River valley and into the northwestern Adirondacks. In the western Adirondacks, the heaviest lake-effect snowfall periods featured strong, near-zonal boundary layer flow, a deep boundary layer, and a single precipitation band aligned along the long-lake axis. Airborne profiling radar observations collected during OWLeS IOP10 revealed precipitation enhancement over Tug Hill, spillover and shadowing in the Black River valley where a resonant lee wave was present, and precipitation invigoration over the western Adirondacks. These results illustrate the orographic modulation of inland-penetrating lake-effect systems downstream of Lake Ontario and the factors favoring heavy snowfall over the western Adirondacks. Significance StatementInland penetrating lake-effect storms east of Lake Ontario affect remote rural communities, enable a regional winter-sports economy, and contribute to a snowpack that contributes to runoff and flooding during thaws and rain-on-snow events. In this study we illustrate how the region’s three major geographic features—Tug Hill, the Black River valley, and the western Adirondacks—affect the characteristics of lake-effect precipitation, describe the factors contributing to heavy snowfall over the western Adirondacks, and provide an examples of terrain effects in a lake-effect storm observed with a specially instrumented research aircraft.more » « less
- 
            Abstract Lake-effect precipitation is convective precipitation produced by relatively cold air passing over large and relatively warm bodies of water. This phenomenon most often occurs in North America over the southern and eastern shores of the Great Lakes, where high annual snowfalls and high-impact snowstorms frequently occur under prevailing west and northwest flow. Locally higher snow or rainfall amounts also occur due to lake-enhanced synoptic precipitation when conditionally unstable or neutrally stratified air is present in the lower troposphere. While likely less common, lake-effect and lake-enhanced precipitation can also occur with easterly winds, impacting the western shores of the Great Lakes. This study describes a 15-year climatology of easterly lake-effect (ELEfP) and lake-enhanced (ELEnP) precipitation (conjointly Easterly Lake Collective Precipitation: ELCP) events that developed in east-to-east-northeasterly flow over western Lake Superior from 2003 to 2018. ELCP occurs infrequently but often enough to have a notable climatological impact over western Lake Superior with an average of 14.6 events per year. The morphology favors both single shore-parallel ELEfP bands due to the convex western shoreline of Lake Superior and mixed-type banding due to ELEnP events occurring in association with “overrunning” synoptic-scale precipitation. ELEfP often occurs in association with a surface anticyclone to the north of Lake Superior. ELEnP typically features a similar northerly-displaced anticyclone and a surface cyclone located over the U.S. Upper Midwest that favor easterly boundary-layer winds over western Lake Superior.more » « less
- 
            Abstract of Purpose and Method: The Lake-Effect Snow Ensemble Reanalysis version 1.0 dataset contains hourly gridded atmospheric variables for the Great Lakes region, focusing on events during the NSF OWLeS field campaign, which took place in December 2013 and January 2014. A reanalysis represents the best estimate of the state of the atmosphere by combining observations that are sparse in space and time with a dynamical model and weighting them by their uncertainties. This reanalysis uses the Penn State University Ensemble Kalman Filter (PSU EnKF) for data assimilation with Weather Research and Forecasting (WRF) model. Observations that are assimilated include conventional surface and atmospheric observations from NOAA. The dataset includes gridded fields of temperature, wind, surface pressure, and precipitation fields, and is downloadable as netCDF files. Companion papers, cited below, further describe this dataset as well as apply it to scientific studies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
