Abstract Background and objectivesThe coproduct of ethanol industry, dried distiller's grains with solubles (DDGS), has phosphorus content in excess of the animal diet requirement, which leads to excess P in manure and causes environmental concerns. The objective of this study is to determine the technical and economic feasibility of recovering this excess P as a coproduct. FindingsThe amount of P was observed to reduce from 9.26 to 3.25 mg/g (db) of DDGS, which is consistent with the animal diet requirement of 3–4 mg P/g animal diet. For an existing dry grind plant of 40 million gallon ethanol capacity, an additional fixed cost of $5.7 million was estimated, with an operating cost increase of $1.29 million/year. ConclusionsThe total phosphorus recovered from the plant was estimated as 1,676 kg P/day, with an estimated operating cost of $2.33/kg P recovered. Significance and noveltyApproximately 37 million MT of DDGS is produced annually as animal food containing excess P, which is a serious concern for the environment. This study provides with an economically feasible solution to recover the excess P as a coproduct, which has a potential to be used as fertilizer on more than 56,000 acres of land annually, growing corn and soybean.
more »
« less
Techno‐economic feasibility of phosphorus recovery as a coproduct from corn wet milling plants
Abstract Background and objectivesWet milling (WM) plants contribute to both point source and nonpoint source phosphorus (P) pollution by concentrating P in the coproduct corn gluten feed (CGF), the majority of which is undigested when consumed by ruminants, leading to manure management concerns. Phosphorus runoff from the manure consequently causes eutrophication in the water bodies downstream. This study investigates the economic feasibility of recovering the phosphorus at the front end from light steepwater to reduce P in CGF. FindingsThe amount of phosphorus in CGF was observed to reduce from 11.94 mg/g (db) to 2.44 mg/g (db), with phosphorus removal in the recovery unit calibrated with laboratory experiments. Direct fixed capital cost of $6.9 MM was estimated for the phosphorus recovery unit in an existing WM plant. ConclusionsWith a phosphorus recovery rate of 0.17 MT/hr, the operating cost of P recovery at the front end was estimated to be $1.23/kg‐P removed. Significance and noveltyRamifications of excess phosphorus in CGF on environment are an important understudied area. This study provided economic and technical feasibility of phosphorus recovery from CGF in WM industry, consequently producing a new coproduct and reducing the environmental burden.
more »
« less
- Award ID(s):
- 1739788
- PAR ID:
- 10462202
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Cereal Chemistry
- Volume:
- 96
- Issue:
- 2
- ISSN:
- 0009-0352
- Page Range / eLocation ID:
- p. 380-390
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Implications of excess phosphorus (P) in waste streams obtained from soy‐based protein preparation processes on the environment and their potential utilization as P‐source are two significant understudied areas. Soybean‐based protein ingredients for food products retain comparatively enhanced functional properties and are cheaper than other plant‐based proteins. Soybean protein can be extracted and utilized as a food ingredient primarily by preparing soy protein concentrates (SPC) and soy protein isolates (SPI) from soybean meal/defatted soy flour (DSF). In a typical soybean processing facility, along with the soy products and soy‐protein preparations, the recovery of phosphorus as a coproduct will enhance the economic feasibility of the overall process as the recovered P can be used as fertilizer. In this study, the SPC and SPI were prepared from the DSF following widely used conventional protocols and P flow in these processes was tracked. In SPC production, ~59% of the total P was retained with SPC and ~34% was in the aqueous waste streams. For SPI process ~24% of total P was retained with SPI and ~59% went in the waste solid residue (~40%) and aqueous streams (~19%). About 80%–89% P removal from the waste aqueous streams was achieved by Ca‐phytate precipitation. This work demonstrated that in the process of SPC and SPI preparation the phosphorus from the waste aqueous streams can be precipitated out to avoid subsequent eutrophication and the waste solid residue with ~40% P can be reused as a P‐fertilizer as other applications of this residue are unspecified.more » « less
-
Abstract The Twin Falls, Idaho wastewater treatment plant (WWTP), currently operates solely to achieve regulatory permit compliance. Research was conducted to evaluate conversion of the WWTP to a water resource recovery facility (WRRF) and to assess the WRRF environmental sustainability; process configurations were evaluated to produce five resources—reclaimed water, biosolids, struvite, biogas, and bioplastics (polyhydroxyalkanoates, PHA). PHA production occurred using fermented dairy manure. State‐of‐the‐art biokinetic modeling, performed using Dynamita's SUMO process model, was coupled with environmental life cycle assessment to quantify environmental sustainability. Results indicate that electricity production via combined heat and power (CHP) was most important in achieving environmental sustainability; energy offset ranged from 43% to 60%, thereby reducing demand for external fossil fuel‐based energy. While struvite production helps maintain a resilient enhanced biological phosphorus removal (EBPR) process, MgO2production exhibits negative environmental impacts; integration with CHP negates the adverse consequences. Integrating dairy manure to produce bioplastics diversifies the resource recovery portfolio while maintaining WRRF environmental sustainability; pilot‐scale evaluations demonstrated that WRRF effluent quality was not affected by the addition of effluent from PHA production. Collectively, results show that a WRRF integrating dairy manure can yield a diverse portfolio of products while operating in an environmentally sustainable manner. Practitioner pointsWastewater carbon recovery via anaerobic digestion with combined heat/power production significantly reduces water resource recovery facility (WRRF) environmental emissions.Wastewater phosphorus recovery is of value; however, struvite production exhibits negative environmental impacts due to MgO2production emissions.Bioplastics production on imported organic‐rich agri‐food waste can diversify the WRRF portfolio.Dairy manure can be successfully integrated into a WRRF for bioplastics production without compromising WRRF performance.Diversifying the WRRF products portfolio is a strategy to maximize resource recovery from wastewater while concurrently achieving environmental sustainability.more » « less
-
Abstract The economic viability of corn biorefineries depends heavily on the sale of coproducts as animal feeds, but elevated phosphorus (P) contents can exacerbate manure management issues. Phosphorus removal from light steep water and thin stillage, two concentrated in‐process aqueous streams at wet milling and dry‐grind corn biorefineries, could simultaneously generate concentrated fertilizer and low‐P animal feeds, but little is known regarding how differences in stream composition affect removal. To address this data gap, we show that the solubility of P in light steep filtrate (LSF) and thin stillage filtrate (TSF) exhibits distinct sensitivity to calcium (Ca) and base addition due to differences in P fractionation and protein abundance. In LSF, P was primarily organic, and near‐complete removal of P (96%) was observed at pH 8 and a Ca/total P (TP) ratio of 2. In TSF, TP removal was lower (81%), and there was more equal distribution of organic and orthophosphate, indicating that the Ca requirements of inorganic P precipitation were a limiting factor. The C/H/N ratio, elemental characterization, and crude protein analysis of the precipitated solids indicated that coprecipitation of amorphous solids containing Ca, Mg, and K with soluble proteins facilitated removal of P, particularly in LSF. Although the removal mechanisms and solubility limits differed, these results highlighted the magnitude (40–70 mM) and efficacy (80–96%) of P recovery from two biorefinery streams.more » « less
-
The over-enrichment of phosphorus in waste streams can lead to eutrophication and oxygen limitations for aquatic life. To understand the release of phosphorus from a soybean processing facility, it is imperative to track the flow of phosphorus in different streams during the processing of soybeans. The objective of the study is to develop process simulation models to study the flow of phosphorus in the soy-biodiesel process and evaluate strategies to mitigate phosphorus release by recovering phosphorous from soapstock and wastewater. Since most of the P is found in soybean meal, the processing of which releases phosphorus, a third case of lecithin recovery was also studied to reduce the amount of phosphorous in soybean meal. It was observed that phosphorus can be economically recovered from the soapstock, as well as the wastewater stream, with an estimated operating cost of USD 1.65 and 3.62 per kg of phosphorous recovered, respectively. The phosphorus recovered from both streams can be potentially applied as fertilizer to more than 13,000 acres of corn or 96,000 acres of soybean, respectively. The lecithin recovery case was found to have the highest revenue, and it led to a 54% reduction in phosphorous during soybean meal processing.more » « less
An official website of the United States government
